Date
Mon, 08 Mar 2010
Time
17:00 - 18:00
Location
Gibson 1st Floor SR
Speaker
Wojciech ZAJACZKOWSKI
Organisation
Polish Academy of Sciences

We consider the motion of a viscous incompressible fluid described by

the Navier-Stokes equations in a bounded cylinder with slip boundary

conditions. Assuming that $L_2$ norms of the derivative of the initial

velocity and the external force with respect to the variable along the

axis of the cylinder are sufficiently small we are able to prove long

time existence of regular solutions. By the regular solutions we mean

that velocity belongs to $W^{2,1}_2 (Dx(0,T))$ and gradient of pressure

to $L_2(Dx(0,T))$. To show global existence we prolong the local solution

with sufficiently large T step by step in time up to infinity. For this purpose

we need that $L_2(D)$ norms of the external force and derivative

of the external force in the direction along the axis of the cylinder

vanish with time exponentially.

Next we consider the inflow-outflow problem. We assume that the normal

component of velocity is nonvanishing on the parts of the boundary which

are perpendicular to the axis of the cylinder. We obtain the energy type

estimate by using the Hopf function. Next the existence of weak solutions is

proved.

Please contact us with feedback and comments about this page. Last updated on 10 Oct 2023 16:49.