Date
Thu, 29 Apr 2010
Time
14:00 - 15:00
Location
Rutherford Appleton Laboratory, nr Didcot
Speaker
Prof Dominique Orban
Organisation
Canada

Interior-point methods for linear and convex quadratic programming

require the solution of a sequence of symmetric indefinite linear

systems which are used to derive search directions. Safeguards are

typically required in order to handle free variables or rank-deficient

Jacobians. We propose a consistent framework and accompanying

theoretical justification for regularizing these linear systems. Our

approach is akin to the proximal method of multipliers and can be

interpreted as a simultaneous proximal-point regularization of the

primal and dual problems. The regularization is termed "exact" to

emphasize that, although the problems are regularized, the algorithm

recovers a solution of the original problem. Numerical results will be

presented. If time permits we will illustrate current research on a

matrix-free implementation.

This is joint work with Michael Friedlander, University of British Columbia, Canada

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.