Spectral discrete solitons: from cnoidal waves to spatio-temporal helical beams

25 November 2010
Andrey Gorbach
In my talk I will introduce the concept of spectral discrete solitons (SDSs): solutions of nonlinear Schroedinger type equations, which are localized on a regular grid in frequency space. In time domain such solitons correspond to periodic trains of pulses. SDSs play important role in cascaded four-wave-mixing processes (frequency comb generation) in optical fibres, where initial excitation by a two-frequency pump leads to the generation of multiple side-bands. When free space diffraction is taken into consideration, a non-trivial generalization of 1D SDSs will be discussed, in which every individual harmonic is an optical vortex with its own topological charge. Such excitations correspond to spatio-temporal helical beams.
  • Differential Equations and Applications Seminar