Thin Shear Layers - the Key to Turbulence Structure

14 October 2010
16:30
Julian Hunt
Abstract
The new model is that the universal small scale structure of high Reynolds number turbulence is determined by the dynamics of thin evolving shear layers, with thickness of the order of the Taylor micro scale,within which there are the familiar elongated vortices .Local quasi-linear dynamics shows how the shear layers act as barriers to external eddies and a filter for the transfer of energy to their interiors. The model is consistent with direct numerical simulations by Ishihara and Kaneda analysed in terms of conditional statistics relative to the layers and also with recent 4D measurements of lab turbulence by Wirth and Nickels. The model explains how the transport of energy into the layers leads to the observed inertial range spectrum and to the generation of intense structures, on the scale of the Kolmogorov micro-scale. But the modelling also explains the important discrepancies between data and the Kolmogorov-Richardson cascade concept ,eg larger amplitudes of the smallest scale motions and of the higher moments ,and why the latter are generally less isotropic than lower order moments, eg in thermal convection. Ref JCRHunt , I Eames, P Davidson,J.Westerweel, J Fernando, S Voropayev, M Braza J Hyd Env Res 2010
  • Differential Equations and Applications Seminar