"h-principle and fluid dynamics"

28 January 2011
16:30
Professor Camillo De Lellis.
Abstract
<p>There are nontrivial solutions of the incompressible Euler equations which are compactly supported in space and time. If they were to model the motion of a real fluid, we would see it suddenly start moving after staying at rest for a while, without any action by an external force. There are C1 isometric embeddings of a fixed flat rectangle in arbitrarily small balls of the three dimensional space. You should therefore be able to put a fairly large piece of paper in a pocket of your jacket without folding it or crumpling it. I will discuss the corresponding mathematical theorems, point out some surprising relations and give evidences that, maybe, they are not merely a mathematical game.</p>