Symmetries in Biological and Physical Networks

26 November 2007
(All day)
Prof. Ian Stewart FRS
Abstract

The symmetries of a dynamical system have a big effect on its typical behaviour. The most obvious effect is pattern formation - the dynamics itself may be symmetric, though often the symmetry of the system is 'broken', and the state has less symmetry than the system. The resulting phenomena are fairly well understood for steady and time-periodic states, and quite a bit can be said for chaotic dynamics. More recently, the concept of 'symmetry' has been generalised to address applications to physical and biological networks. One consequence is a new approach to patterns of synchrony and phase relations. The lecture will describe some of the high points of the emerging theories, including applications to evolution, locomotion, human balance and fluid dynamics.