Modelling the Circulatory System

10 March 2011
Nick Hill
A mathematical model of Olufsen [1,2] has been extended to study periodic pulse propagation in both the systemic arteries and the pulmonary arterial and venous trees. The systemic and pulmonary circulations are treated as separate, bifurcating trees of compliant and tapering vessels. Each model is divided into two coupled parts: the larger and smaller vessels. Blood flow and pressure in the larger arteries and veins are predicted from a nonlinear 1D cross-sectional area-averaged model for a Newtonian fluid in an elastic tube. The initial cardiac output is obtained from magnetic resonance measurements. The smaller blood vessels are modelled as asymmetric structured trees with specified area and asymmetry ratios between the parent and daughter arteries. For the systemic arteries, the smaller vessels are placed into a number of separate trees representing different vascular beds corresponding to major organs and limbs. Womersley's theory gives the wave equation in the frequency domain for the 1D flow in these smaller vessels, resulting in a linear system. The impedances of the smallest vessels are set to a constant and then back-calculation gives the required outflow boundary condition for the Navier--Stokes equations in the larger vessels. The flow and pressure in the large vessels are then used to calculate the flow and pressure in the small vessels. This gives the first theoretical calculations of the pressure pulse in the small `resistance' arteries which control the haemodynamic pressure drop. I will discuss the effects, on both the forward-propagating and the reflected components of the pressure pulse waveform, of the number of generations of blood vessels, the compliance of the arterial wall, and of vascular rarefaction (the loss of small systemic arterioles) which is associated with type II diabetes. We discuss the possibilities for developing clinical indicators for the early detection of vascular disease. References: 1. M.S. Olufsen et al., Ann Biomed Eng. 28, 1281-99 (2000) 2. M.S. Olufsen, Am J Physiol. 276, H257--68 (1999)
  • Differential Equations and Applications Seminar