First-order axioms for Zilber's exponential field

10 March 2011
17:00
Jonathan Kirby
Abstract

Zilber constructed an exponential field B, which is conjecturally isomorphic to the complex exponential field. He did so by giving axioms in an infinitary logic, and showing there is exactly one model of those axioms. Following a suggestion of Zilber, I will give a different list of axioms satisfied by B which, under a number-theoretic conjecture known as CIT, describe its complete first-order theory