Date
Wed, 05 Oct 2011
10:10
Location
OCCAM Common Room (RI2.28)
Speaker
Jan Haskovec

A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed.

This modelling approach incorporates recent experimental findings on behaviour of locusts. It exhibits nontrivial dynamics with a "phase change" behaviour and recovers the observed group directional switching. Estimates of the expected switching times, in terms of number of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations with nonlocal and nonlinear right hand side is derived and analyzed. The existence of its solutions is proven and the systemʼs long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the effect of shrinking the interaction radius in the individual-based model when the number of individuals grows. This is a joint work with Radek Erban.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.