Optimization on matrix manifolds

27 October 2005
14:00
Dr Pierre-Antoine Absil
Abstract

It is well known that the computation of a few extreme eigenvalues, and the corresponding eigenvectors, of a symmetric matrix A can be rewritten as computing extrema of the Rayleigh quotient of A. However, since the Rayleigh quotient is a homogeneous function of degree zero, its extremizers are not isolated. This difficulty can be remedied by restricting the search space to a well-chosen manifold, which brings the extreme eigenvalue problem into the realm of optimization on manifolds. In this presentation, I will show how a recently-proposed generalization of trust-region methods to Riemannian manifolds applies to this problem, and how the resulting algorithms compare with existing ones.

I will also show how the Joint Diagonalization problem (that is, approximately diagonalizing a collection of symmetric matrices via a congruence transformation) can be tackled by a differential geometric approach. This problem has an important application in Independent Component Analysis.

  • Computational Mathematics and Applications Seminar