Date
Thu, 29 Apr 2004
Time
14:00 - 15:00
Location
Rutherford Appleton Laboratory, nr Didcot
Speaker
Dr Damien Jenkinson
Organisation
University of Huddersfield

Consider approximating a set of discretely defined values $f_{1}, \ldots , f_{m}$ say at $x=x_{1}, x_{2}, \ldots, x_{m}$, with a chosen approximating form. Given prior knowledge that noise is present and that some might be outliers, a standard least squares approach based on $l_{2}$ norm of the error $\epsilon$ may well provide poor estimates. We instead consider a least squares approach based on a modified measure of the form $\tilde{\epsilon} = \epsilon (1+c^{2}\epsilon^{2})^{-\frac{1}{2}}$, where $c$ is a constant to be fixed.

\\

The choice of the constant $c$ in this estimator has a significant effect on the performance of the estimator both in terms of its algorithmic convergence to a solution and its ability to cope effectively with outliers. Given a prior estimate of the likely standard deviation of the noise in the data, we wish to determine a value of $c$ such that the estimator behaves like a robust estimator when outliers are present but like a least squares estimator otherwise.

\\

We describe approaches to determining suitable values of $c$ and illustrate their effectiveness on approximation with polynomial and radial basis functions. We also describe algorithms for computing the estimates based on an iteratively weighted linear least squares scheme.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.