On the Nonlinear Variational Wave Equation

17 October 2011
17:00
Abstract
We prove existence of a global semigroup of conservative solutions of the nonlinear variational wave equation $u_{tt}-c(u) (c(u)u_x)_x=0$. The equation was derived by Saxton as a model for liquid crystals. This equation shares many of the peculiarities of the Hunter–Saxton and the Camassa–Holm equations. In particular, the equation possesses two distinct classes of solutions denoted conservative and dissipative. In order to solve the Cauchy problem uniquely it is necessary to augment the equation properly. In this talk we describe how this is done for conservative solutions. The talk is based on joint work with X. Raynaud.
  • Partial Differential Equations Seminar