Properties of $\mathcal{X}$-convex functions and $\mathcal{X}$-subdifferential

24 November 2011
12:30
Federica Dragoni
Abstract
In the first part of the talk I will introduce a notion of convexity ($\mathcal{X}$-convexity) which applies to any given family of vector fields: the main model which we have in mind is the case of vector fields satisfying the H\"ormander condition. Then I will give a PDE-characterization for $\mathcal{X}$-convex functions using a viscosity inequality for the intrinsic Hessian and I will derive bounds for the intrinsic gradient and intrinsic local Lipschitz-continuity for this class of functions.\\ In the second part of the talk I will introduce a notion of subdifferential for any given family of vector fields (namely $\mathcal{X}$-subdifferential) and show that a non empty $\mathcal{X}$-subdifferential at any point characterizes the class of $\mathcal{X}$-convex functions. As application I will prove a Jensen-type inequality for $\mathcal{X}$-convex functions in the case of Carnot-type vector fields. {\em (Joint work with Martino Bardi)}.
  • OxPDE Lunchtime Seminar