Quantile forecasting of wind power using variability indices

24 January 2012
Georgios Anastasiades

Quantile forecasting of wind power using variability indices
Abstract: Wind power forecasting techniques have received substantial attention recently due to the increasing penetration of wind energy in national power systems.  While the initial focus has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. Using four years of wind power data from three wind farms in Denmark, we develop quantile regression models to generate short-term probabilistic forecasts from 15 minutes up to six hours ahead. More specifically, we investigate the potential of using various variability indices as explanatory variables in order to include the influence of changing weather regimes. These indices are extracted from the same  wind power series and optimized specifically for each quantile. The forecasting performance of this approach is compared with that of some benchmark models. Our results demonstrate that variability indices can increase the overall skill of the forecasts and that the level of improvement depends on the specific quantile.

  • Junior Applied Mathematics Seminar