Date
Thu, 01 Mar 2012
Time
14:00 - 15:00
Location
Gibson Grd floor SR
Speaker
Professor Paul Houston
Organisation
University of Nottingham

In this talk we present an overview of some recent developments concerning the a posteriori error analysis and adaptive mesh design of $h$- and $hp$-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems. In particular, we consider the derivation of computable bounds on the error measured in terms of an appropriate (mesh-dependent) energy norm in the case when a two-grid approximation is employed. In this setting, the fully nonlinear problem is first computed on a coarse finite element space $V_{H,P}$. The resulting 'coarse' numerical solution is then exploited to provide the necessary data needed to linearise the underlying discretization on the finer space $V_{h,p}$; thereby, only a linear system of equations is solved on the richer space $V_{h,p}$. Here, an adaptive $hp$-refinement algorithm is proposed which automatically selects the local mesh size and local polynomial degrees on both the coarse and fine spaces $V_{H,P}$ and $V_{h,p}$, respectively. Numerical experiments confirming the reliability and efficiency of the proposed mesh refinement algorithm are presented.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.