Modelling rate limitations in dissimilatory iron reduction

15 June 2012
14:30
Dr Henry Winstanley
Abstract
Respiration is a redox reaction in which oxidation of a substrate (often organic) is coupled to the reduction of a terminal electron acceptor (TEA) such as oxygen. Iron oxides in various mineral forms are abundant in sediments and sedimentary rocks, and many subsurface microbes have the ability to respire using Fe(III) as the TEA in anoxic conditions. This process is environmentally important in the degradation of organic substrates and in the redox-cycling of iron. But low mineral solubility limits the bioavailability of Fe(III), which microbes access primarily through reductive dissolution. For aqueous nutrients, expressions for microbial growth and nutrient uptake rates are standardly based on Monod kinetics. We address the question of what equivalent description is appropriate when solid phase Fe(III) is the electron acceptor.
  • Mathematical Geoscience Seminar