Global Optimization of Lipschitz Continuous Function with Applications to Reservoir Simulation

1 June 2012
14:30
Dr Jari Fowkes
Abstract
This talk will consist of two parts. In the first part we will present a motivating application from oil reservoir simulation, namely finding the location and trajectory of an oil producing well which maximises oil production. We will show how such a problem can be tackled through the use of radial basis function (RBF) approximation (also known as Kriging or Gaussian process regression) and a branch and bound global optimization algorithm. In the second part of the talk we will show how one can improve the branch and bound algorithm through the use of Lipschitz continuity of the RBF approximation. This leads to an entirely new global optimization algorithm for twice differentiable functions with Lipschitz continuous Hessian. The algorithm makes use of recent cubic regularisation techniques from local optimization to obtain the necessary bounds within the branch and bound algorithm.
  • Mathematical Geoscience Seminar