Parameter estimation for electrochemical cells

25 May 2012

Please note the unusual start-time.

In order to run accurate electrochemical models of batteries (and other devices) it is necessary to know a priori the values of many geometric, electrical and electrochemical parameters (10-100 parameters) e.g. diffusion coefficients, electrode thicknesses etc. However a basic difficulty is that the only external measurements that can be made on cells without deconstructing and destroying them are surface temperature plus electrical measurements (voltage, current, impedance) at the terminals. An interesting research challenge therefore is the accurate, robust estimation of physically realistic model parameters based only on external measurements of complete cells. System identification techniques (from control engineering) including ‘electrochemical impedance spectroscopy’ (EIS) may be applied here – i.e. small signal frequency response measurement. However It is not clear exactly why and how impedance correlates to SOC/ SOH and temperature for each battery chemistry due to the complex interaction between impedance, degradation and temperature.

I will give a brief overview of some of the recent work in this area and try to explain some of the challenges in the hope that this will lead to a fruitful discussion about whether this problem can be solved or not and how best to tackle it.

  • Industrial and Interdisciplinary Workshops