Seminar series
Date
Tue, 11 Sep 2012
Time
10:15 - 11:15
Location
OCCAM Common Room (RI2.28)
Speaker
Samo Kralj
Organisation
University of Maribor

Topological defects (TDs) are unavoidable consequence of continuous symmetry breaking phase transitions. They exhibit several universal features and often span apparently completely different systems. Particularly convenient testing ground to study basic physics of TDs are liquid crystals (LCs) due to their softness, liquid character and optical anisotropy. In the lecture I will present our recent theoretical studies of TDs in nematic LCs, which are of interest also to other branches of physics.

 

I will first focus on coarsening dynamics of TDs following the isotropic-nematic phase transition. Among others we have tested the validity of the Kibble-Zurek [1,2] prediction on the size of the so called protodomains, which was originally derived to estimate density of TDs as a function of inflation time in the early universe. Next I will consider nematic LC shells [3]. These systems are of interest because they could pave path to mm sized scaled crystals exhibiting different symmetries. Particular attention will be paid to curvature induced unbinding of pairs of topological defects. This process might play important role in membrane fission processes.  

 

[1] W.H. Zurek, Nature 317, 505 (1985).

[2] Z. Bradac et al.,  J.Chem.Phys 135, 024506 (2011)

[3] S. Kralj et al.,  Soft Matter 7, 670 (2011); 8, 2460  (2012).

Please contact us with feedback and comments about this page. Last updated on 04 Apr 2022 14:57.