Recovering curves from L-series

27 September 2012
11:00
Gunther Cornelissen
Abstract
<p>The main result of the talk is that two curves over a finite field are isomorphic, up to automorphisms of the ground field, if and only if there is an isomorphism of groups of Dirichlet characters such that the corresponding L-series are all equal. This can be shown by combining Uchida's proof of the anabelian theorem for global function fields with methods from (noncommutative) dynamical systems. I will also discuss how to turn this theorem into a theoretical algorithm that, given a listing of L-functions, determines an equation for the corresponding curve(s).</p>
  • Number Theory Seminar