Date
Tue, 30 Oct 2012
Time
12:00 - 13:00
Location
L3
Speaker
Alastair Kay

Topological quantum error correcting codes, such as the Toric code, are
ideal candidates for protecting a logical quantum bit against local noise.
How are we to get the best performance from these codes when an unknown
local perturbation is applied? This talk will discuss how knowledge, or lack
thereof, about the error affects the error correcting threshold, and how
thresholds can be improved by introducing randomness to the system. These
studies are directed at trying to understand how quantum information can be
encoded and passively protected in order to maximise the span of time between successive rounds of error correction, and what properties are
required of a topological system to induce a survival time that grows
sufficiently rapidly with system size. The talk is based on the following
papers: arXiv:1208.4924 and Phys. Rev. Lett. 107, 270502 (2011).

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.