Limits on GeV-scale WIMP Annihilation in Dwarf Spheroidals with IceCube DeepCore
Abbasi, R Ackermann, M Adams, J Agarwalla, S Aguilar, J Ahlers, M Alameddine, J Ali, S Amin, N Andeen, K Argüelles, C Ashida, Y Athanasiadou, S Axani, S Babu, R Bai, X Baines-Holmes, J V., A Barwick, S Bash, S Basu, V Bay, R Beatty, J Tjus, J Behrens, P Beise, J Bellenghi, C Benkel, S BenZvi, S Berley, D Bernardini, E Besson, D Blaufuss, E Bloom, L Blot, S Bodo, I Bontempo, F Motzkin, J Meneguolo, C Böser, S Botner, O Böttcher, J Braun, J Brinson, B Brisson-Tsavoussis, Z Burley, R Butterfield, D Campana, M Carloni, K Carpio, J Chattopadhyay, S Chau, N Chen, Z Chirkin, D Choi, S Clark, B Coleman, A Coleman, P Collin, G Borja, D Connolly, A Conrad, J Cowen, D De Clercq, C DeLaunay, J Delgado, D Delmeulle, T Deng, S Desiati, P de Vries, K de Wasseige, G DeYoung, T Díaz-Vélez, J DiKerby, S Ding, T Dittmer, M Domi, A Draper, L Dueser, L Durnford, D Dutta, K DuVernois, M Ehrhardt, T Eidenschink, L Eimer, A Eldridge, C Eller, P Ellinger, E Elsässer, D Engel, R Erpenbeck, H Esmail, W Eulig, S Evans, J Evenson, P Fan, K Fang, K Farrag, K Fazely, A Fedynitch, A Feigl, N Finley, C Fischer, L Fox, D Franckowiak, A Fukami, S Fürst, P Gallagher, J Ganster, E Garcia, A Garcia, M Garg, G Genton, E Gerhardt, L Ghadimi, A Glüsenkamp, T Gonzalez, J Goswami, S Granados, A Grant, D Gray, S Griffin, S Griswold, S Groth, K Guevel, D Günther, C Gutjahr, P Ha, C Haack, C Hallgren, A Halve, L Halzen, F Hamacher, L Minh, M Handt, M Hanson, K Hardin, J Harnisch, A Hatch, P Haungs, A Häußler, J Helbing, K Hellrung, J Henke, B Hennig, L Henningsen, F Heuermann, L Hewett, R Heyer, N Hickford, S Hidvegi, A Hill, C Hill, G Hmaid, R Hoffman, K Hooper, D Hori, S Hoshina, K Hostert, M Hou, W Hrywniak, M Huber, T Hultqvist, K Hymon, K Ishihara, A Iwakiri, W Jacquart, M Jain, S Janik, O Jansson, M Jeong, M Jin, M Kamp, N Kang, D Kang, W Kappes, A Kardum, L Karg, T Karl, M Karle, A Katil, A Kauer, M Kelley, J Khanal, M Zathul, A Kheirandish, A Kimku, H Kiryluk, J Klein, C Klein, S Kobayashi, Y Kochocki, A Koirala, R Kolanoski, H Kontrimas, T Köpke, L Kopper, C Koskinen, D Koundal, P Kowalski, M Kozynets, T Kravka, A Krieger, N Krishnamoorthi, J Krishnan, T Kruiswijk, K Krupczak, E Kumar, A Kun, E Kurahashi, N Lad, N Gualda, C Arnaud, L Larson, M Lauber, F Lazar, J DeHolton, K Leszczyńska, A Li, C Liao, J Lin, C Liu, Q Liu, Y Liubarska, M Love, C Lu, L Lucarelli, F Luszczak, W Lyu, Y Macdonald, M Madsen, J Magnus, E Makino, Y Manao, E Mancina, S Mand, A Mariş, I Marka, S Marka, Z Marten, L Martinez-Soler, I Maruyama, R Mauro, J Mayhew, F McNally, F Meagher, K Mechbal, S Medina, A Meier, M Merckx, Y Merten, L Mitchell, J Molchany, L Mondal, S Montaruli, T Moore, R Morii, Y Mosbrugger, A Moulai, M Mousadi, D Moyaux, E Mukherjee, T Naab, R Nakos, M Naumann, U Necker, J Neste, L Neumann, M Niederhausen, H Nisa, M Noda, K Noell, A Novikov, A Obertacke, A O'Dell, V Olivas, A Orsoe, R Osborn, J O'Sullivan, E Palusova, V Pandya, H Parenti, A Park, N Parrish, V Paudel, E Paul, L Heros, C Pernice, T Petersen, T Peterson, J Plum, M Pontén, A Poojyam, V Popovych, Y Rodriguez, M Pries, B Procter-Murphy, R Przybylski, G Pyras, L Raab, C Rack-Helleis, J Rad, N Ravn, M Rawlins, K Rechav, Z Rehman, A Reistroffer, I Resconi, E Reusch, S Rho, C Rhode, W Ricca, L Riedel, B Rifaie, A Roberts, E Rongen, M Rosted, A Rott, C Ruhe, T Ruohan, L Ryckbosch, D Saffer, J Salazar-Gallegos, D Sampathkumar, P Sandrock, A Sanger-Johnson, G Santander, M Sarkar, S Scarnera, M Schaile, P Schaufel, M Schieler, H Schindler, S Schlickmann, L Schlüter, B Schlüter, F Schmeisser, N Schmidt, T Schröder, F Schumacher, L Schwirn, S Sclafani, S Seckel, D Seen, L Seikh, M Seunarine, S Myhr, P Shah, R Shah, S Shefali, S Shimizu, N Skrzypek, B Snihur, R Soedingrekso, J Soldin, D Soldin, P Sommani, G Spannfellner, C Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stezelberger, T Stürwald, T Stuttard, T Sullivan, G Taboada, I Ter-Antonyan, S Terliuk, A Thakuri, A Thiesmeyer, M Thompson, W Thwaites, J Tilav, S Tollefson, K Toscano, S Tosi, D Trettin, A Upadhyay, A Upshaw, K Vaidyanathan, A Valtonen-Mattila, N Valverde, J Vandenbroucke, J Van Eeden, T van Eijndhoven, N Van Rootselaar, L van Santen, J Vara, J Varsi, F Venugopal, M Vereecken, M Carrasco, S Verpoest, S Veske, D Vijai, A Villarreal, J Walck, C Wang, A Warrick, E Weaver, C Weigel, P Weindl, A Weldert, J Wen, A Wendt, C Werthebach, J Weyrauch, M Whitehorn, N Wiebusch, C Williams, D Witthaus, L Wolf, M Wrede, G Xu, X Yanez, J Yao, Y Yildizci, E Yoshida, S Young, R Yu, F Yu, S Yuan, T Yun-Cárcamo, S Jurowitzki, A Zegarelli, A Zhang, S Zhang, Z Zhelnin, P Zilberman, P (24 Nov 2025)

The Academy for the Mathematical Sciences has announced its first cohort of fellows, 100 in total from across academia and teaching, science communication and business. Twelve of those fellows are from Oxford, spread across four departments, reflecting the reach and importance of mathematics. 

Mon, 02 Feb 2026

14:00 - 15:00
Lecture 3

Convex Analysis of Non-Convex Neural Networks

Aaron Mishkin
(Stanford University, USA)
Abstract

Speaker Aaron Mishkin will talk about; 'Convex Analysis of Non-Convex Neural Networks

One of the key themes in modern optimization is the boundary between convex and non-convex problems. While convex problems can often be solved efficiently, many non-convex programs are NP-Hard and formally difficult. 

In this talk, we show how to break the barrier between convex and non-convex optimization by reformulating, or "lifting", neural networks into high-dimensional spaces where they become convex. These convex reformulations serve two purposes: as algorithmic tools to enable fast, global optimization for two-layer ReLU networks; and as a convex proxy to study variational properties of the original non-convex problem. In particular, we show that shallow ReLU networks are equivalent to models with simple "gated ReLU" activations, derive the set of all critical points for two-layer ReLU networks, and give the first polynomial-time algorithm for optimal neuron pruning. We conclude with extensions to ReLU networks of arbitrary depth using a novel layer-elimination argument.

 

Thu, 30 Apr 2026

16:00 - 17:00
L5

TBA

Dr. Hans Buehler
((Mathematical Institute University of Oxford))
Abstract

TBA

Thu, 12 Mar 2026

12:00 - 13:00
C5

TBA

Lorenzo Portinale
(Università degli Studi di Milano)
Abstract

TBA

Thu, 26 Feb 2026

12:00 - 13:00
C5

Uniquess domains for bounded solutions of 2x2 hyperbolic systems

Elio Marconi
(University of Padova)
Abstract
For a genuinely nonlinear $2 \times 2$ hyperbolic system of conservation laws, assuming that the initial data have small $\bf L^\infty$ norm but possibly unbounded total variation, the existence of global solutions was proved in a classical paper by Glimm and Lax (1970). In general, the total variation of these solutions decays like $t^{-1}$. Motivated by the theory of fractional domains for linear analytic semigroups, we consider here solutions with faster decay rate: $\hbox{Tot.Var.}\bigl\{u(t,\cdot)\bigr\}\leq C t^{\alpha-1}$. For these solutions, a uniqueness theorem is proved. Indeed, as the initial data range over a domain of functions with $\|\bar u\|_{{\bf L}^\infty} \leq\varepsilon_1$ small enough, solutions with fast decay yield a Hölder continuous semigroup. The Hölder exponent can be taken arbitrarily close to 1 by further shrinking the value of $\varepsilon_1>0$. An auxiliary result identifies a class of initial data whose solutions have rapidly decaying total variation.
This is a joint work with A. Bressan and G. Vaidya.


 

The geometry of sloppiness
Dufresne, E Harrington, H Raman, D (19 Aug 2016)
Graph-Facilitated Resonant Mode Counting in Stochastic Interaction Networks
Adamer, M Woolley, T Harrington, H (28 Feb 2017)
Bistability in Apoptosis by Receptor Clustering
Ho, K Harrington, H (08 Dec 2009)
Topological data analysis of continuum percolation with disks
Speidel, L Harrington, H Chapman, S Porter, M (20 Apr 2018)
Subscribe to