Ricci curvature and orientability
Abstract
This talk will focus on various definitions of orientability for non-smooth spaces with Ricci curvature bounded from below. The stability of orientability and non-orientability will be discussed. As an application, we will prove the orientability of 4-manifolds with non-negative Ricci curvature and Euclidean volume growth. This work is based on a collaboration with E. Bruè and A. Pigati.
Rigidity in the Ginzburg–Landau equation from S2 to S2
Abstract
The Ginzburg–Landau energy is often used to approximate the Dirichlet energy. As the perturbation parameter tends to zero, critical points of the Ginzburg–Landau energy converge, in an appropriate (bubbling) sense, to harmonic maps. In this talk I will first explain key analytical properties of this approximation procedure, then show that not every harmonic map can be approximated in this way. This is based on a rigidity theorem: under the energy threshold of 8pi, we classify all solutions of the associated nonlinear elliptic system from S2 to S2, thereby identifying exactly which harmonic maps can arise as Ginzburg–Landau limits in this regime.
13:00
Categorical fragmentation and filtered topology
Abstract
I will review notions of categorical complexity, and the more recent work of Biran, Cornea and Zhang on fragmentation in triangulated persistence categories (TPCs), then go on to discuss applications of this to filtered topology. In particular, we will consider a suitable category of filtered topological spaces and detail some constructions and properties, before showing that an associated 'filtered stable homotopy category' is a TPC. I will then give some interesting results relating to this.
Mean-field limits of non-exchangeable interacting diffusions on co-evolutionary networks
Abstract
Differentiation on metric spaces
Abstract
2d Sinh-Gordon model on the infinite cylinder
Abstract
The 2d (massless) Sinh-Gordon model is amongst the simplest 2d quantum field theories that are expected to be integrable (= infinitely many symmetries), but without conformal symmetry. In this talk I will explain a rigorous construction of this model and its vertex correlations (= Laplace transforms) on the infinite cylinder using probability theory. A fundamental role is played by the Sinh-Gordon Hamiltonian and I will explain how the theory of Gaussian multiplicative chaos can be used to analyze this linear map. This talk will be based on joint work with Colin Guillarmou and Vincent Vargas.
11:00
Coming up from $-\infty$ for KPZ via stochastic control
Abstract
We derive a lower bound, independent of the initial condition, for the solution of the KPZ equation on the torus, using its representation as the value function of a stochastic control problem.
With the same techniques we also prove a bound for its oscillation, again independent of initial conditions, which is related to Harnack's inequality for the (rough) heat equation.