14:00
Koszulity for semi-infinite highest weight categories
Abstract
Koszul algebras are positively graded algebras with very amenable homological properties. Typical examples include the polynomial ring over a field or the exterior and symmetric algebras of a vector space. A category is called Koszul if it has a grading with which it is equivalent to the category of graded modules over a Koszul algebra. A famous example (due to Soergel) is the principal block of category $\mathcal{O}$ for a semisimple Lie algebra. Koszulity is a very nice property, but often very difficult to check. In this talk, Thorsten Heidersdorf (Newcastle University) will give a criterion that allows to check Koszulity in case the category is a graded semi-infinite highest weight category (which is a structure that appears often in representation theory). This is joint work with Jonas Nehme and Catharina Stroppel.
