Parameter identifiability and model selection for partial differential equation models of cell invasion
Liu, Y Suh, K Maini, P Cohen, D Baker, R Journal of the Royal Society Interface volume 21 (06 Mar 2024)
Fast and accurate randomized algorithms for linear systems and eigenvalue problems
Nakatsukasa, Y Tropp, J SIAM Journal on Matrix Analysis and Applications
Thu, 22 Feb 2024

17:00 - 18:00

Sets that are very large and very small

Asaf Karagila (Leeds)
Abstract
We can compare the relative sizes of sets by using injections or (partial) surjections, but without the axiom of choice we cannot prove that every two sets can be compared. We can use the ordinals to define a notion of size which allows us to determine whether a set is "large" or "small" relative to another. The first is defined by the Hartogs number, which is the least ordinal which does not inject into the set; the second is the Lindenbaum number of a set, which is the first ordinal which is not an image of the set. In this talk we will discuss some basic properties of these numbers and some basic historical results. 

 
In a new work with Calliope Ryan-Smith we showed that given any pair of (infinite) cardinals, we can onstruct a symmetric extension in which there is a set whose Hartogs is the smaller and the Lindenbaum is the larger. Moreover, using the techniques of iterated symmetric extensions, we can realise all possible pairs in a single model.

 
This work appears on arXiv: https://arxiv.org/abs/2309.11409
Thu, 08 Feb 2024

11:00 - 12:00
C3

Model companions of fields with no points in hyperbolic varieties

Michal Szachniewicz
(University of Oxford)
Abstract

This talk is based on a joint work with Vincent Jinhe Ye. I will define various classes of hyperbolic varieties (Broody hyperbolic, algebraically hyperbolic, bounded, groupless) and discuss existence of model companions of classes of fields that exclude them. This is related to moduli spaces of maps to hyperbolic varieties and to the (open) question whether the above mentioned hyperbolicity notions are in fact equivalent.

Subscribe to