The triangulation complexity of elliptic and sol 3-manifolds
Lackenby, M Purcell, J Mathematische Annalen (12 Jan 2024)
Fri, 19 Jan 2024

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Image of mathematical instruments

We all know that mathematical activity goes on nowadays in a great variety of settings – not just in academia, but across the whole range of industry, education, and beyond.  This diversity in mathematics is by no means new, and yet the study of the history of mathematics has often failed to capture it.  

Nightline is an independent listening, support, and information service run for students, by students.  We aim to provide every student in Oxford with the opportunity to talk to someone in confidence – students can ring us on 01865 270270, or message us online at oxfordnightline.org/talk

Tue, 16 Jan 2024

14:00 - 15:00
L4

Heights of random trees

Louigi Addario-Berry
(McGill University)
Abstract

A rooted tree $T$ has degree sequence $(d_1,\ldots,d_n)$ if $T$ has vertex set $[n]$ and vertex $i$ has $d_i$ children for each $i$ in $[n]$. 

I will describe a line-breaking construction of random rooted trees with given degree sequences, as well as a way of coupling random trees with different degree sequences that also couples their heights to one another. 

The construction and the coupling have several consequences, and I'll try to explain some of these in the talk.

First, let $T$ be a branching process tree with criticalmean oneoffspring distribution, and let $T_n$ have the law of $T$ conditioned to have size $n$. Then the following both hold.
1) $\operatorname{height}(T_n)/\log(n)$ tends to infinity in probability. 
2) If the offspring distribution has infinite variance then $\operatorname{height}(T_n)/n^{1/2}$ tends to $0$ in probability. This result settles a conjecture of Svante Janson.

The next two statements relate to random rooted trees with given degree sequences. 
1) For any $\varepsilon > 0$ there is $C > 0$ such that the following holds. If $T$ is a random tree with degree sequence $(d_1,\ldots,d_n)$ and at least $\varepsilon n$ leaves, then $\mathbb{E}(\operatorname{height}(T)) < C \sqrt{n}$. 
2) Consider any random tree $T$ with a fixed degree sequence such that $T$ has no vertices with exactly one child. Then $\operatorname{height}(T)$ is stochastically less than $\operatorname{height}(B)$, where $B$ is a random binary tree of the same size as $T$ (or size one greater, if $T$ has even size). 

This is based on joint work with Serte Donderwinkel and Igor Kortchemski.

Pizza will be back in the cafe next week on Tuesday and Thursday afternoons. 

Also keep an eye out for the dessert specials on Wednesdays and a toast bar in the near future.

ORA collection on AI & Machine Learning launch event - call for speakers: the Bodleian Libraries have recently launched the ORA (Oxford Research Archive) collection on Artificial Intelligence and Machine Learning.

Extensional flow of a compressible viscous fluid
McPhail, M Oliver, J Parker, R Griffiths, I Journal of Fluid Mechanics volume 977 a43 (22 Dec 2023)
Subscribe to