Tue, 28 Nov 2023

16:00 - 17:00
L1

Euclidean Ramsey Theory

Imre Leader
(University of Cambridge)
Abstract

Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.

A list of our most commonly asked questions as well as some information regarding funding, applications, and graduate study at Oxford.
Fri, 24 Nov 2023
12:00
L3

Thermodynamics of Near Extremal Black Holes in AdS(5)

Finn Larsen
(Michigan)
Abstract
The phase diagram of near extremal black holes is surprisingly rich.  In some regimes quantum effects are so strong that they dominate. On the supersymmetric locus there is a large ground state degeneracy protected by a gap. Throughout, there is an intricate classical interplay between charge and rotation. The talk reviews some of the physical mechanisms and highlights some unresolved tensions between claims in the literature. 
 
Fri, 17 Nov 2023
17:30
Zoom

Twistor Particle Programme Rebooted: A "zig-z̄ag" Theory of Massive Spinning Particles

Joonhwi Kim
(Caltech)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

Recently, the Newman-Janis shift has been revisited from the angle of scattering amplitudes in terms of the so-called "massive spinor-helicity variables," tracing back to Penrose and Perjés in the 70s. However, well-established results are limited in the same-helicity (self-dual) sector, while a puzzle of spurious poles arises in mixed-helicity sectors. This talk will outline how massive twistor theory can reproduce the same-helicity results while offering a possible solution to the spurious pole puzzle. Firstly, the Newman-Janis shift in the same-helicity sector is derived from a complexified version of the equivalence principle. Secondly, the massive twistor particle is coupled to background fields from bottom-up and top-down perspectives. The former is based on perturbations of symplectic structures in massive twistor space. The latter provides a generalization of Newman-Janis shift in generic backgrounds, which also leads to "curved massive twistor space" and its deformed massive incidence relation. Lastly, the Feynman rules of the first-quantized massive twistor particle and their physical interpretation are briefly discussed. Overall, a significant emphasis is put on the Kähler geometry ("zig-z̄ag structure") of massive twistor space, which eventually connects to a worldsheet structure of the Kerr solution.

 

Search for Extended Sources of Neutrino Emission in the Galactic Plane with IceCube
Abbasi, R Ackermann, M Adams, J Agarwalla, S Aguilar, J Ahlers, M Alameddine, J Amin, N Andeen, K Anton, G Argüelles, C Ashida, Y Athanasiadou, S Axani, S Bai, X Balagopal, A Baricevic, M Barwick, S Basu, V Bay, R Beatty, J Tjus, J Beise, J Bellenghi, C Benning, C BenZvi, S Berley, D Bernardini, E Besson, D Blaufuss, E Blot, S Bontempo, F Book, J Meneguolo, C Böser, S Botner, O Böttcher, J Bourbeau, E Braun, J Brinson, B Brostean-Kaiser, J Burley, R Busse, R Butterfield, D Campana, M Carloni, K Carnie-Bronca, E Chattopadhyay, S Chau, N Chen, C Chen, Z Chirkin, D Choi, S Clark, B Classen, L Coleman, A Collin, G Connolly, A Conrad, J Coppin, P Correa, P Cowen, D Dave, P De Clercq, C DeLaunay, J Delgado, D Deng, S Deoskar, K Desai, A Desiati, P de Vries, K de Wasseige, G DeYoung, T Diaz, A Díaz-Vélez, J Dittmer, M Domi, A Dujmovic, H DuVernois, M Ehrhardt, T Eller, P Ellinger, E Mentawi, S Elsässer, D Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fang, K Farrag, K Fazely, A Fedynitch, A Feigl, N Fiedlschuster, S Finley, C Fischer, L Fox, D Franckowiak, A Fritz, A Fürst, P Gallagher, J Ganster, E Garcia, A Gerhardt, L Ghadimi, A Glaser, C Glauch, T Glüsenkamp, T Goehlke, N Gonzalez, J Goswami, S Grant, D Gray, S Gries, O Griffin, S Griswold, S Groth, K Günther, C Gutjahr, P Haack, C Hallgren, A Halliday, R Halve, L Halzen, F Hamdaoui, H Minh, M Hanson, K Hardin, J Harnisch, A Hatch, P Haungs, A Helbing, K Hellrung, J Henningsen, F Heuermann, L Heyer, N Hickford, S Hidvegi, A Hill, C Hill, G Hoffman, K Hori, S Hoshina, K Hou, W Huber, T Hultqvist, K Hünnefeld, M Hussain, R Hymon, K In, S Ishihara, A Jacquart, M Janik, O Jansson, M Japaridze, G Jeong, M Jin, M Jones, B Kang, D Kang, W Kang, X Kappes, A Kappesser, D Kardum, L Karg, T Karl, M Karle, A Katz, U Kauer, M Kelley, J Zathul, A Kheirandish, A Kiryluk, J Klein, S Kochocki, A Koirala, R Kolanoski, H Kontrimas, T Köpke, L Kopper, C Koskinen, D Koundal, P Kovacevich, M Kowalski, M Kozynets, T Krishnamoorthi, J Kruiswijk, K Krupczak, E Kumar, A Kun, E Kurahashi, N Lad, N Gualda, C Lamoureux, M Larson, M Latseva, S Lauber, F Lazar, J Lee, J DeHolton, K Leszczyńska, A Lincetto, M Liu, Q Liubarska, M Lohfink, E Love, C Mariscal, C Lu, L Lucarelli, F Luszczak, W Lyu, Y Madsen, J Mahn, K Makino, Y Manao, E Mancina, S Sainte, W Mariş, I Marka, S Marka, Z Marsee, M Martinez-Soler, I Maruyama, R Mayhew, F McElroy, T McNally, F Mead, J Meagher, K Mechbal, S Medina, A Meier, M Merckx, Y Merten, L Micallef, J Mitchell, J Montaruli, T Moore, R Morii, Y Morse, R Moulai, M Mukherjee, T Naab, R Nagai, R Nakos, M Naumann, U Necker, J Negi, A Neumann, M Niederhausen, H Nisa, M Noell, A Novikov, A Nowicki, S Pollmann, A O’Dell, V Oehler, M Oeyen, B Olivas, A Orsoe, R Osborn, J O’Sullivan, E Pandya, H Park, N Parker, G Paudel, E Paul, L de los Heros, C Peterson, J Philippen, S Pizzuto, A Plum, M Pontén, A Popovych, Y Rodriguez, M Pries, B Procter-Murphy, R Przybylski, G Raab, C Rack-Helleis, J Rawlins, K Rechav, Z Rehman, A Reichherzer, P Renzi, G Resconi, E Reusch, S Rhode, W Riedel, B Rifaie, A Roberts, E Robertson, S Rodan, S Roellinghoff, G Rongen, M Rott, C Ruhe, T Ruohan, L Ryckbosch, D Rysewyk, D Safa, I Saffer, J Salazar-Gallegos, D Sampathkumar, P Herrera, S Sandrock, A Santander, M Sarkar, S Savelberg, J Savina, P Schaufel, M Schieler, H Schindler, S Schlickmann, L Schlüter, B Schlüter, F Schmeisser, N Schmidt, T Schneider, J Schröder, F Schumacher, L Schwefer, G Sclafani, S Seckel, D Seikh, M Seunarine, S Shah, R Sharma, A Shefali, S Shimizu, N Silva, M Skrzypek, B Smithers, B Snihur, R Soedingrekso, J Søgaard, A Soldin, D Soldin, P Sommani, G Spannfellner, C Spiczak, G Spiering, C Stamatikos, M Stanev, T Stezelberger, T Stürwald, T Stuttard, T Sullivan, G Taboada, I Ter-Antonyan, S Thiesmeyer, M Thompson, W Thwaites, J Tilav, S Tollefson, K Tönnis, C Toscano, S Tosi, D Trettin, A Tung, C Turcotte, R Twagirayezu, J Ty, B Elorrieta, M Upadhyay, A Upshaw, K Valtonen-Mattila, N Vandenbroucke, J van Eijndhoven, N Vannerom, D van Santen, J Vara, J Veitch-Michaelis, J Venugopal, M Vereecken, M Verpoest, S Veske, D Vijai, A Walck, C Weaver, C Weigel, P Weindl, A Weldert, J Wendt, C Werthebach, J Weyrauch, M Whitehorn, N Wiebusch, C Willey, N Williams, D Wolf, A Wolf, M Wrede, G Xu, X Yanez, J Yildizci, E Yoshida, S Young, R Yu, F Yu, S Yuan, T Zhang, Z Zhelnin, P Zimmerman, M Collaboration, I The Astrophysical Journal volume 956 issue 1 20- (01 Oct 2023)

This track is taken from the album There's a Riot Goin' On, where Sly Stone moved away from the upbeat soul of the sixties and filled the sound with a downbeat, hazy instrumentation and vocal. Apparently he wasn't feeling great at the time. Critics think it is great though. Such is art.

A central limit theorem for the number of excursion set components of gaussian fields
Belyaev, D Annals of Probability
Tue, 21 Nov 2023
11:00
L1

Singularity Detection from a Data "Manifold"

Uzu Lim
(Mathematical Institute)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

High-dimensional data is often assumed to be distributed near a smooth manifold. But should we really believe that? In this talk I will introduce HADES, an algorithm that quickly detects singularities where the data distribution fails to be a manifold.

By using hypothesis testing, rather than persistent homology, HADES achieves great speed and a strong statistical foundation. We also have a precise mathematical theorem for correctness, proven using optimal transport theory and differential geometry. In computational experiments, HADES recovers singularities in synthetic data, road networks, molecular conformation space, and images.

Paper link: https://arxiv.org/abs/2311.04171
Github link: https://github.com/uzulim/hades
 

As of the 1st January 2024 the UKRI policy on monographs (and book chapters) will come into force.

The Bodleian is running several online policy briefings which will cover this policy and how to apply for funds and comply with the policy:

Thu, 23rd Nov, 2023 - 14:00-15:00 – Book here

Subscribe to