Cohomology of algebraic varieties over non-archimedean fields
Kovacsics, P Edmundo, M Ye, J Forum of Mathematics Sigma volume 10 e94- (21 Oct 2022)
The étale open topology over the fraction field of a Henselian local domain
Johnson, W Walsberg, E Ye, J Mathematische Nachrichten volume 296 issue 5 1928-1937 (14 May 2023)
PETERZIL–STEINHORN SUBGROUPS AND -STABILIZERS IN ACF
Kamensky, M Starchenko, S Ye, J Journal of the Institute of Mathematics of Jussieu volume 22 issue 3 1003-1022 (21 May 2023)
Stable formulas in ordered structures
Hoffmann, D Tran, C Ye, J Israel Journal of Mathematics volume 254 issue 1 293-312 (28 Apr 2023)
Mon, 12 Jun 2023
16:00
L1

Departmental Colloquium

George Lusztig
(Massachusetts Institute of Technology)
Further Information

George Lusztig is the Abdun-Nur Professor of Mathematics. He joined the MIT mathematics faculty in 1978 following a professorship appointment at the University of Warwick, 1974-77. He was appointed Norbert Wiener Professor at MIT 1999-2009.

Lusztig graduated from the University of Bucharest in 1968, and received both the M.A. and Ph.D. from Princeton University in 1971 under the direction of Michael Atiyah and William Browder. Professor Lusztig works on geometric representation theory and algebraic groups. He has received numerous research distinctions, including the Berwick Prize of the London Mathematical Society (1977), the AMS Cole Prize in Algebra (1985), and the Brouwer Medal of the Dutch Mathematical Society (1999), and the AMS Leroy P. Steele Prize for Lifetime Achievement (2008), "for entirely reshaping representation theory, and in the process changing much of mathematics."

Professor Lusztig is a Fellow of the Royal Society (1983), Fellow of the American Academy of Arts & Sciences (1991), and Member of the National Academy of Sciences (1992). He was the recipient of the Shaw Prize (2014) and the Wolf Prize (2022).

Fri, 09 Jun 2023
16:00
L2

North meets South

Dr Thomas Karam (North Wing) and Dr Hamid Rahkooy (South Wing)
Abstract

North Wing talk: Dr Thomas Karam
Title: Ranges control degree ranks of multivariate polynomials on finite prime fields.

Abstract: Let $p$ be a prime. It has been known since work of Green and Tao (2007) that if a polynomial $P:\mathbb{F}_p^n \mapsto \mathbb{F}_p$ with degree $2 \le d \le p-1$ is not approximately equidistributed, then it can be expressed as a function of a bounded number of polynomials each with degree at most $d-1$. Since then, this result has been refined in several directions. We will explain how this kind of statement may be used to deduce an analogue where both the assumption and the conclusion are strengthened: if for some $1 \le t < d$ the image $P(\mathbb{F}_p^n)$ does not contain the image of a non-constant one-variable polynomial with degree at most $t$, then we can obtain a decomposition of $P$ in terms of a bounded number of polynomials each with degree at most $\lfloor d/(t+1) \rfloor$. We will also discuss the case where we replace the image $P(\mathbb{F}_p^n)$ by for instance $P(\{0,1\}^n)$ in the assumption.

 

South Wing talk: Dr Hamid Rahkooy
Title: Toric Varieties in Biochemical Reaction Networks

Abstract: Toric varieties are interesting objects for algebraic geometers as they have many properties. On the other hand, toric varieties appear in many applications. In particular, dynamics of many biochemical reactions lead to toric varieties. In this talk we discuss how to test toricity algorithmically, using computational algebra methods, e.g., Gröbner bases and quantifier elimination. We show experiments on real world models of reaction networks and observe that many biochemical reactions have toric steady states. We discuss complexity bounds and how to improve computations in certain cases.

Fri, 02 Jun 2023
16:00
L1

OUI: Consultancy 101

Dawn Gordon, Project Manager
(Oxford University Innovation)
Abstract

Come to this session to learn how to get started in consultancy from Dawn Gordon at Oxford University Innovation (OUI). After an introduction to what consultancy is, we'll explore case studies of consultancy work performed by mathematicians and statisticians within the university. This session will also include practical advice on how you can explore consultancy opportunities alongside your research work, from finding potential clients to the support that OUI can offer.

Fri, 26 May 2023
16:00
L1

Looking after our mental health in an academic environment

Abstract

To tie in with mental health awareness week, in this session we'll give a brief overview of the mental health support available through the department and university, followed by a panel discussion on how we can look after our mental health as in an academic setting. We're pleased that several of our department Mental Health First Aiders will be panellists - come along for hints and tips on maintaining good mental health and supporting your colleagues and friends.

Fri, 19 May 2023
16:00
L1

SIAM Student Chapter: 3-minute thesis competition

Abstract

For week 4's @email session we welcome the SIAM-IMA student chapter, running their annual Three Minute Thesis competition.

The Three Minute Thesis competition challenges graduate students to present their research in a clear and engaging manner within a strict time limit of three minutes. Each presenter will be allowed to use only one static slide to support their presentation, and the panel of esteemed judges (details TBC) will evaluate the presentations based on criteria such as clarity, pacing, engagement, enthusiasm, and impact. Each presenter will receive a free mug and there is £250 in cash prizes for the winners. If you're a graduate student, sign up here (https://oxfordsiam.com/3mt) by Friday of week 3 to take partAnd if not, come along to support your DPhil friends and colleagues, and to learn about the exciting maths being done by our research students.

Fri, 12 May 2023
16:00
L1

Departmental Colloquium: Liliana Borcea

Liliana Borcea, Peter Field Collegiate Professor of Mathematics
(University of Michigan)
Further Information

Liliana Borcea is the Peter Field Collegiate Professor of Mathematics at the University of Michigan. Her research interests are in scientific computing and applied mathematics, including the scattering and transport of electromagnetic waves.

Abstract

Title: When data driven reduced order modelling meets full waveform inversion

Abstract:

This talk is concerned with the following inverse problem for the wave equation: Determine the variable wave speed from data gathered by a collection of sensors, which emit probing signals and measure the generated backscattered waves. Inverse backscattering is an interdisciplinary field driven by applications in geophysical exploration, radar imaging, non-destructive evaluation of materials, etc. There are two types of methods:

(1) Qualitative (imaging) methods, which address the simpler problem of locating reflective structures in a known host medium. 

(2) Quantitative methods, also known as velocity estimation. 

Typically, velocity estimation is  formulated as a PDE constrained optimization, where the data are fit in the least squares sense by the wave computed at the search wave speed. The increase in computing power has lead to growing interest in this approach, but there is a fundamental impediment, which manifests especially for high frequency data: The objective function is not convex and has numerous local minima even in the absence of noise.

The main goal of the talk is to introduce a novel approach to velocity estimation, based on a reduced order model (ROM) of the wave operator. The ROM is called data driven because it is obtained from the measurements made at the sensors. The mapping between these measurements and the ROM is nonlinear, and yet the ROM can be computed efficiently using methods from numerical linear algebra. More importantly, the ROM can be used to define a better objective function for velocity estimation, so that gradient based optimization can succeed even for a poor initial guess.

 

Subscribe to