Partial Differential Equations of Mixed Type—Analysis and Applications
Chen, G Notices of the American Mathematical Society volume 70 issue 1 1- (01 Jan 2023)
Mon, 13 Feb 2023

15:30 - 16:30
L1

Stability of deep residual neural networks via discrete rough paths

Nikolas Tapia
Abstract

Using rough path techniques, we provide a priori estimates for the output of Deep Residual Neural Networks in terms of both the input data and the (trained) network weights. As trained network weights are typically very rough when seen as functions of the layer, we propose to derive stability bounds in terms of the total p-variation of trained weights for any p∈[1,3]. Unlike the C1-theory underlying the neural ODE literature, our estimates remain bounded even in the limiting case of weights behaving like Brownian motions, as suggested in [Cohen-Cont-Rossier-Xu, "Scaling Properties of Deep Residual Networks”, 2021]. Mathematically, we interpret residual neural network as solutions to (rough) difference equations, and analyse them based on recent results of discrete time signatures and rough path theory. Based on joint work with C. Bayer and P. K. Friz.
 

Thu, 16 Feb 2023

16:00 - 17:00
L6

Decentralised Finance: the Uniswap v3 ecosystem

Deborah Miori
Abstract

The Uniswap v3 ecosystem is built upon liquidity pools, where pairs of tokens are exchanged subject to a fee. We propose a systematic workflow to extract a meaningful but tractable sub-universe out of the current > 6,000 pools. We filter by imposing minimum levels on individual pool features, e.g. liquidity locked and agents’ activity, but also maximising the interconnection between the chosen pools to support broader dynamics. Then, we investigate liquidity consumption behaviour on the most relevant pools for Jan-June 2022. We propose to describe each liquidity taker by a transaction graph, which is a complete graph where nodes are transactions on pools and edges have weights from the time elapsed between pairs of transactions. Each graph is embedded into a vector by our own variant of the NLP rooted graph2vec algorithm. Thus, we are able to investigate the structural equivalence of liquidity takers behaviour and extract seven clusters with interpretable features. Finally, we introduce an ideal crypto law inspired from the ideal gas law of thermodynamics. Our model tests a relationship between variables that govern the mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. If the law is satisfied, we say the pool has high cryptoness and demonstrate that it constitutes a better venue for the activity of market participants. Our metric could be employed by regulators and practitioners for developing pool health monitoring tools and establishing minimum levels of requirements.

Tue, 21 Feb 2023
14:00
L6

A Prolog-assisted search for simple Lie algebras

David Stewart
(University of Manchester)
Abstract

(jt work with David Cushing and George Stagg)

Prolog is a rather unusual programming language that was developed by Alain Colmerauer 50 years ago in one of the buildings on the way to the CIRM in Luminy. It is a declarative language that operates on a paradigm of first-order logic -- as distinct from imperative languages like C, GAP and Magma. Prolog operates by loading in a list of axioms as input, and then responds at the command line to queries that ask the language to achieve particular goals, given those axioms. It gained some notoriety through IBM’s implementation of ‘Watson’, which was a system designed to play the game show Jeopardy. Through a very efficiently implemented constraint logic programming module, it is also the worlds fastest sudoku solver. However, it has had barely any serious employment by pure mathematicians. So the aim of this talk is to advertise Prolog through an extended example: my co-authors and I used it to search for new simple Lie algebras over the field GF(2) and were able to classify a certain flavour of absolutely simple Lie algebra in dimensions 15 and 31, discovering a dozen or so new examples. With some further examples in dimension 63, we then extrapolated two previously undocumented infinite families of simple Lie algebras.

Tue, 07 Mar 2023
14:00
L6

The anti-spherical Hecke categories for Hermitian symmetric pairs

Maud De Visscher
(City University London)
Abstract

Kazhdan-Lusztig polynomials are remarkable polynomials associated to pairs of elements in a Coxeter group W. They describe the base change between the standard and Kazhdan-Lusztig bases for the corresponding Hecke algebra. They were discovered by Kazhdan and Lusztig in 1979 and have found applications throughout representation theory and geometry. In 1987, Deodhar introduced the parabolic Kazhdan-Lusztig polynomials associated to a Coxeter group W and a standard parabolic subgroup P. These describe the base change between the standard and Kazhdan-Lusztig bases for the anti-spherical module for the Hecke algebra. (We recover the original definition of Kazhdan and Lusztig by taking the trivial parabolic subgroup).

(Anti-spherical) Hecke categories first rose to mathematical celebrity as the centrepiece of the proof of the (parabolic) Kazhdan-Lusztig positivity conjecture. The Hecke category categorifies the Hecke algebra and the anti-spherical Hecke category categorifies the anti-spherical module. More precisely, it was shown by Elias-Williamson (and Libedinsky-Williamson) that the (parabolic) Kazhdan-Lusztig polynomials are precisely the graded decomposition numbers for the (anti-spherical) Hecke categories over fields of characteristic zero, hence proving positivity of their coefficients.
The (anti-spherical) Hecke categories can be defined over any field. Their graded decomposition numbers over fields of positive characteristic p, the so-called (parabolic) p-Kazhdan-Lusztig polynomials, have been shown to have deep connections with the modular representation theory of reductive groups and symmetric groups. However, these polynomials are notoriously difficult to compute.
Unlike in the case of the ordinary (parabolic) Kazhdan-Lusztig polynomials, there is not even a recursive algorithm to compute them in general.
In this talk, I will discuss the representation of the anti-spherical Hecke categories for (W,P) a Hermitian symmetric pair, over an arbitrary field. In particular, I will explain why the decomposition numbers are characteristic free in this case.
This is joint work with C. Bowman, A. Hazi and E. Norton.

Tue, 07 Feb 2023
14:00
L6

Bornological and condensed mathematics

Federico Bambozzi
(University of Padova)
Abstract

I will explain how bornological and condensed structures can both be described as algebraic theories. I will also show how this permits the construction of functors between bornological and condensed structures. If time permits I will also briefly describe how to compare condensed derived geometry and bornological derived geometry and sketch how they relate to analytic geometry and Arakelov geometry

Tue, 31 Jan 2023
14:00
L6

Blocks for classical p-adic groups and the local Langlands correspondence

Robert Kurinczuk
((University of Sheffield))
Abstract

The local Langlands conjectures connect representations of p-adic groups to certain representations of Galois groups of local fields called Langlands parameters.  Recently, there has been a shift towards studying representations over more general coefficient rings and towards certain categorical enhancements of the original conjectures.  In this talk, we will focus on representations over coefficient rings with p invertible and how the corresponding category of representations of the p-adic group decomposes.  

Tue, 24 Jan 2023
14:00
L6

Highest weight theory and wall-crossing functors for reduced enveloping algebras

Matthew Westaway
(University of Birmingham)
Abstract

In the last few years, major advances have been made in our understanding of the representation theory of reductive algebraic groups over algebraically closed fields of positive characteristic. Four key tools which are central to this progress are highest weight theory, reduction to the principal block, wall-crossing functors, and tilting modules. When considering instead the representation theory of the Lie algebras of these algebraic groups, more subtleties arise. If we look at those modules whose p-character is in so-called standard Levi form we are able to recover the four tools mentioned above, but they have been less well-studied in this setting. In this talk, we will explore the similarities and differences which arise when employing these tools for the Lie algebras rather than the algebraic groups. This research is funded by a research fellowship from the Royal Commission for the Exhibition of 1851.

Tue, 17 Jan 2023
14:00
L6

Local Langlands correspondence and (stable) Bernstein center

Ju-Lee Kim
(MIT)
Abstract

We discuss the Local Langlands correspondence in connection with the Bernstein center and the Stable Bernstein center. We also give an example of stable Bernstein center as a stable essentially compact invariant distribution.

Nonlinear independent component analysis for discrete-time and continuous-time signals
Schell, A Oberhauser, H Annals of Statistics volume 51 issue 2 487-518 (13 Jun 2023)
Subscribe to