Mon, 19 May 2008
17:00
L1

Canonical triangulations of quasifuchian convex cores

Francois Gueritaud
(ENS)
Abstract
Quasifuchsian punctured-torus groups are the `simplest'
Kleinian groups with an interesting deformation theory. I will show that the convex core of the quotient of hyperbolic 3-space by such a group admits a decomposition into ideal tetrahedra which is canonical in two completely independent senses: one combinatorial, the other geometric. One upshot is a proof of the Bending Lamination Conjecture for such groups.
Fri, 22 Feb 2008
14:15
L3

Non Archimedian Geometry and Model Theory

Francois Loeser
(ENS)
Abstract

We shall present work in progress in collaboration with E. Hrushovski on the geometry of spaces of stably dominated types in connection with non archimedean geometry \`a la Berkovich

Tue, 27 Nov 2007
13:00
L1

Elliptic curves, Cherednik Hecke algebras and Macdonald polynomials I

Olivier Schiffmann
(ENS)
Abstract

We provide a realization of Cherednik's double affine Hecke

algebras (for GL_n) as a convolution algebra of functions on moduli spaces

of coherent sheaves on an elliptic curve. As an application we give a

geometric construction of Macdonald polynomials as (traces of) certain

natural perverse sheaves on these moduli spaces. We will discuss the

possible extensions to higher (or lower !) genus curves and the relation

to the Hitchin nilpotent variety. This is (partly) based on joint work

with I. Burban and E. Vasserot.

Thu, 18 Oct 2007
16:00
SR1

Motivic measure for pseudo-finite like fields

I. Halupczok
(ENS)
Abstract

To understand the definable sets of a theory, it is helpful to have some invariants, i.e. maps from the definable sets to somewhere else which are invariant under definable bijections. Denef and Loeser constructed a very strong such invariant for the theory of pseudo-finite fields (of characteristic zero): to each definable set, they associate a virtual motive. In this way one gets all the known cohomological invariants of varieties (like the Euler characteristic or the Hodge polynomial) for arbitrary definable sets.

I will first explain this, and then present a generalization to other fields, namely to perfect, pseudo-algebraically closed fields with pro-cyclic Galois group. To this end, we will construct maps between the set of definable sets of different such theories. (More precisely:

between the Grothendieck rings of these theories.) Moreover, I will show how, using these maps, one can extract additional information about definable sets of pseudo-finite fields (information which the map of Denef-Loeser loses).

Subscribe to ENS