Tue, 23 Jan 2024

16:00 - 17:00
C2

Asymptotic freeness in tracial ultraproducts

Cyril Houdayer
(ENS Paris)
Abstract

I will present novel freeness results in ultraproducts of tracial von Neumann algebras. As a particular case, I will show that if a and b are the generators of the free group F_2, then the relative commutants of a and b in the ultraproduct of the free group factor are free with respect to the ultraproduct trace. The proof is based on a surprising application of Lp-boundedness results of Fourier multipliers in free group factors for p > 2. I will describe applications of these results to absorption and model theory of II_1 factors. This is joint work with Adrian Ioana.

Mon, 04 Jun 2018
17:00
L6

Growth of groups, isoperimetry and random walks

Anna Erschler
(ENS Paris)
Abstract

Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In  joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
  2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of  the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be  subgroups in Grigorchuk groups).

In a recent work with Tianyi Zheng, we  provide  near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by 
a measure with power law decay.

Mon, 28 Nov 2011

14:15 - 15:15
L3

Fission varieties

Philip Boalch
(ENS Paris)
Abstract

I'll recall the quasi-Hamiltonian approach to moduli spaces of flat connections on Riemann surfaces, as a nice finite dimensional algebraic version of operations with loop groups such as fusion. Recently, whilst extending this approach to meromorphic connections, a new operation arose, which we will call "fission". As will be explained, this operation enables the construction of many new algebraic symplectic manifolds, going beyond those we were trying to construct.

Mon, 09 May 2005
15:45
DH 3rd floor SR

Large deviations for the Yang-Mills measure

Professor Thierry Levy
(ENS Paris)
Abstract

The Yang-Mills energy is a non-negative functional on the space of connections on a principal bundle over a Riemannian manifold. At a heuristical level, this energy determines a Gibbs measure which is called the Yang-Mills measure. When the manifold is a surface, a stochastic process can be constructed - at least in two different ways - which is a sensible candidate for the random holonomy of a connection distributed according to the Yang-Mills measure. This process is constructed by using some specifications given by physicists of its distribution, namely some of its finite-dimensional marginals, which of course physicists have derived from the Yang-Mills energy, but by non-rigorous arguments. Without assuming any familiarity with this stochastic process, I will present a large deviations result which is the first rigorous link between the Yang-Mills energy and the Yang-Mills measure.

Subscribe to ENS Paris