Mon, 28 Apr 2025
16:30
L4

Wave localization at subwavelength scales

Habib Amari
(ETH)
Abstract

Systems of high-contrast resonators can be used to control and manipulate wave-matter interactions at scales that are much smaller than the operating wavelengths. The aim of this talk is to review recent studies of ordered and disordered systems of subwavelength resonators and to explain some of their topologically protected localization properties. Both reciprocal and non-reciprocal systems will be considered.
 

Tue, 25 May 2021
14:00
Virtual

Crossing probabilities for planar percolation

Vincent Tassion
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Percolation models were originally introduced to describe the propagation of a fluid in a random medium. In dimension two, the percolation properties of a model are encoded by so-called crossing probabilities (probabilities that certain rectangles are crossed from left to right). In the eighties, Russo, Seymour and Welsh obtained general bounds on crossing probabilities for Bernoulli percolation (the most studied percolation model, where edges of a lattice are independently erased with some given probability $1-p$). These inequalities rapidly became central tools to analyze the critical behavior of the model.
In this talk I will present a new result which extends the Russo-Seymour-Welsh theory to general percolation measures satisfying two properties: symmetry and positive correlation. This is a joint work with Laurin Köhler-Schindler.

Tue, 06 Oct 2020
15:30
Virtual

Liouville quantum gravity with matter central in (1,25): a probabilistic approach

Nina Holden
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Liouville quantum gravity (LQG) is a theory of random fractal surfaces with origin in the physics literature in the 1980s. Most literature is about LQG with matter central charge $c\in (-\infty,1]$. We study a discretization of LQG which makes sense for all $c\in (-\infty,25)$. Based on a joint work with Gwynne, Pfeffer, and Remy.

Subscribe to ETH