Mon, 14 Jan 2019
15:45
L6

Dimension series and homotopy groups of spheres

Laurent Bartholdi
(Goettingen)
Abstract


The lower central series of a group $G$ is defined by $\gamma_1=G$ and $\gamma_n = [G,\gamma_{n-1}]$. The "dimension series", introduced by Magnus, is defined using the group algebra over the integers: $\delta_n = \{g: g-1\text{ belongs to the $n$-th power of the augmentation ideal}\}$.

It has been, for the last 80 years, a fundamental problem of group theory to relate these two series. One always has $\delta_n\ge\gamma_n$, and a conjecture by Magnus, with false proofs by Cohn, Losey, etc., claims that they coincide; but Rips constructed an example with $\delta_4/\gamma_4$ cyclic of order 2. On the positive side, Sjogren showed that $\delta_n/\gamma_n$ is always a torsion group, of exponent bounded by a function of $n$. Furthermore, it was believed (and falsely proven by Gupta) that only $2$-torsion may occur.
In joint work with Roman Mikhailov, we prove however that for every prime $p$ there is a group with $p$-torsion in some quotient $\delta_n/\gamma_n$.
Even more interestingly, I will show that the dimension quotient $\delta_n/gamma_n$ is related to the difference between homotopy and homology: our construction is fundamentally based on the order-$p$ element in the homotopy group $\pi_{2p}(S^2)$ due to Serre.
 

Tue, 24 Apr 2018

14:15 - 15:15
L4

Short Laws for Finite Groups and Residual Finiteness Growth

Henry Bradford
(Goettingen)
Abstract

 A law for a group G is a non-trivial equation satisfied by all tuples of elements in G. We study the length of the shortest law holding in a finite group. We produce new short laws holding (a) in finite simple groups of Lie type and (b) simultaneously in all finite groups of small order. As an application of the latter we obtain a new lower bound on the residual finiteness growth of free groups. This talk is based on joint work with Andreas Thom.

Mon, 06 Jun 2016

14:15 - 15:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Goettingen)
Abstract

We want to discuss a collection of results around the following Question: Given a smooth compact manifold $M$ without boundary, does $M$ admit a Riemannian metric of positive scalar curvature?

We focus on the case of spin manifolds. The spin structure, together with a chosen Riemannian metric, allows to construct a specific geometric differential operator, called Dirac operator. If the metric has positive scalar curvature, then 0 is not in the spectrum of this operator; this in turn implies that a topological invariant, the index, vanishes.
 

We use a refined version, acting on sections of a bundle of modules over a $C^*$-algebra; and then the index takes values in the K-theory of this algebra. This index is the image under the Baum-Connes assembly map of a topological object, the K-theoretic fundamental class.

The talk will present results of the following type:
 
If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has non-trivial index, what conditions imply that $M$ does not admit a metric of positive scalar curvature? How is this related to the Baum-Connes assembly map? 

We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$), Engel and new generalizations. Moreover, we will show how these results fit in the context of the Baum-Connes assembly maps for the manifold and the submanifold. 
 

Mon, 10 Nov 2008
15:45
L3

Fibrations with non-commutative fibres

Siegfried Echterhoff
(Goettingen)
Abstract

We study non-commutative analogues of Serre-ï¬~Abrations in topology. We shall present several examples of such ï¬~Abrations and give applications for the computation of the K-theory of certain C*-algebras. (Joint work with Ryszard Nest and Herve Oyono-Oyono.)

Mon, 10 Nov 2008
14:15
L3

A K-theoretic codimension 2 obstruction to positive scalar curvature

Thomas Schick
(Goettingen)
Abstract

Let M be a closed spin manifold.

Gromov and Lawson have shown that the presence of certain "enlargeable"

submanifolds of codimension 2 is an obstruction to the existence of a Riemannian metric with positive scalar curvature on M.

In joint work with Hanke, we refine the geoemtric condition of

"enlargeability": it suffices that a K-theoretic index obstruction of the submanifold doesn't vanish.

A "folk conjecture" asserts that all index type obstructions to positive scalar curvature should be read off from the corresponding index for the ambient manifold M (this this is equivalent to a small part of the strong Novikov conjecture). We address this question for the obstruction above and discuss partial results.

Subscribe to Goettingen