Mon, 20 Feb 2023

14:00 - 15:00
L6

Gradient flows and randomised thresholding: sparse inversion and classification

Jonas Latz
(Heriot Watt University Edinburgh)
Abstract

Sparse inversion and classification problems are ubiquitous in modern data science and imaging. They are often formulated as non-smooth minimisation problems. In sparse inversion, we minimise, e.g., the sum of a data fidelity term and an L1/LASSO regulariser. In classification, we consider, e.g., the sum of a data fidelity term and a non-smooth Ginzburg--Landau energy. Standard (sub)gradient descent methods have shown to be inefficient when approaching such problems. Splitting techniques are much more useful: here, the target function is partitioned into a sum of two subtarget functions -- each of which can be efficiently optimised. Splitting proceeds by performing optimisation steps alternately with respect to each of the two subtarget functions.

In this work, we study splitting from a stochastic continuous-time perspective. Indeed, we define a differential inclusion that follows one of the two subtarget function's negative subdifferential at each point in time. The choice of the subtarget function is controlled by a binary continuous-time Markov process. The resulting dynamical system is a stochastic approximation of the underlying subgradient flow. We investigate this stochastic approximation for an L1-regularised sparse inversion flow and for a discrete Allen-Cahn equation minimising a Ginzburg--Landau energy. In both cases, we study the longtime behaviour of the stochastic dynamical system and its ability to approximate the underlying subgradient flow at any accuracy. We illustrate our theoretical findings in a simple sparse estimation problem and also in low- and high-dimensional classification problems.

 

Tue, 15 Oct 2019

12:00 - 13:15
L4

Gauged sigma models and magnetic skyrmions

Bernd Schroers
(Heriot Watt University Edinburgh)
Abstract

Magnetic skyrmions are topological solitons which occur in a large class
of ferromagnetic materials and which are currently attracting much
attention in the condensed matter community because of  their possible
use  in future magnetic information storage technology.  The talk is
about an integrable model for magnetic skyrmions, introduced in a recent
paper (arxiv 1812.07268) and generalised in (arxiv 1905.06285). The
model can be solved by interpreting it as a gauged nonlinear sigma
model. In the talk will explain the model and the geometry behind its
integrability, and discuss some of the solutions and their physical
interpretation.

Mon, 30 May 2005
15:45
DH 3rd floor SR

Overshoots and undershoots of Levy processes

Dr Andreas E. Kyprianou
(Heriot Watt University Edinburgh)
Abstract

We obtain a new identity giving a quintuple law of overshoot, time of

overshoot, undershoot, last maximum, and time of last maximum of a general Levy

process at ?rst passage. The identity is a simple product of the jump measure

and its ascending and descending bivariate renewal measures. With the help of

this identity, we consider applications for passage problems of stable

processes, recovering and extending results of V. Vigon on the bivariate jump

measure of the ascending ladder process of a general Levy process and present

some new results for asymptotic overshoot distributions for Levy processes with

regularly varying jump measures.

(Parts of this talk are based on joint work with Ron Doney and Claudia

Kluppelberg)

Subscribe to Heriot Watt University Edinburgh