Tue, 08 Feb 2011

14:00 - 15:00
SR1

Complete Intersections of Quadrics

Nicolas Addington
(Imperial College London)
Abstract

There is a long-studied correspondence between intersections of two quadrics and hyperelliptic curves, first noticed by Weil and since used

as a testbed for many fashionable theories: Hodge theory, motives, and moduli of vector bundles in the '70s and '80s, derived categories in the '90s, non-commutative geometry and mirror symmetry today. The story generalizes to three, four, and more quadrics, exhibiting new geometric behaviour at each step. The case of four quadrics nicely illustrates the modern theory of flops and derivced categories and, as a special case, gives a pair of derived-equivalent Calabi-Yau 3-folds.

Mon, 28 Feb 2011

14:15 - 15:15
L3

The Classification of Rational SubTangle Adjacencies, with Applications to Complex Nucleoprotein Assemblies.

Dorothy Buck
(Imperial College London)
Abstract

Many proteins cleave and reseal DNA molecules in precisely orchestrated
ways. Modelling these reactions has often relied on the axis of the DNA
double helix
being circular, so these cut-and-seal mechanisms can be
tracked by corresponding changes in the knot type of the DNA axis.
However, when the DNA molecule is linear, or the
protein action does not manifest itself as a change in knot type, or the
knots types are not 4-plats, these knot theoretic models are less germane.

We thus give a taxonomy of local DNA axis configurations. More precisely, we
characterise
all rational tangles obtained from a given rational tangle via a rational
subtangle
replacement (RSR). This builds on work of Berge and Gabai. 
We further determine the sites for these RSR of distance greater than 1.
Finally, we classify all knots in lens spaces whose exteriors are
generalised Seifert fibered spaces and their lens space surgeries, extending work of
Darcy-Sumners.

Biologically then, this classification is endowed with a distance that
determines how many protein reactions
of a particular type (corresponding to steps of a specified size) are
needed to proceed from one local conformation to another.
We conclude by discussing a variety of biological applications of this
categorisation.

Joint work with Ken Baker

Tue, 23 Nov 2010

15:45 - 16:45
L3

Gravitational instantons from rational elliptic surfaces

Hans-Joachim Hein
(Imperial College London)
Abstract

Gravitational instantons are complete hyperkaehler 4-manifolds whose Riemann curvature tensor is square integrable. They can be viewed as Einstein geometry analogs of finite energy Yang-Mills instantons on Euclidean space. Classical examples include Kronheimer's ALE metrics on crepant resolutions of rational surface singularities and the ALF Riemannian Taub-NUT metric, but a classification has remained largely elusive. I will present a large, new connected family of gravitational instantons, based on removing fibers from rational elliptic surfaces, which contains ALG and ALH spaces as well as some unexpected geometries.

Thu, 04 Nov 2010

16:00 - 17:30
DH 1st floor SR

Interfacial Dynamics in the Presence of Additives

Omar Matar
(Imperial College London)
Abstract

The presence of additives, which may or may not be surface-active, can have a dramatic influence on interfacial flows. The presence of surfactants alters the interfacial tension and drives Marangoni flow that leads to fingering instabilities in drops spreading on ultra-thin films. Surfactants also play a major role in coating flows, foam drainage, jet breakup and may be responsible for the so-called ``super-spreading" of drops on hydrophobic substrates. The addition of surface-inactive nano-particles to thin films and drops also influences the interfacial dynamics and has recently been shown to accelerate spreading and to modify the boiling characteristics of nanofluids. These findings have been attributed to the structural component of the disjoining pressure resulting from the ordered layering of nanoparticles in the region near the contact line. In this talk, we present a collection of results which demonstrate that the above-mentioned effects of surfactants and nano-particles can be captured using long-wave models.

Tue, 26 Jan 2010

15:45 - 16:45
L3

(HoRSe seminar) Symmetric and reduced obstruction theories

Richard Thomas
(Imperial College London)
Abstract

I will describe some more of the deformation theory necessary for the first talk. This leads to a number of natural questions and counterexamples. This talk requires a strong stomach, or a fanatical devotion to symmetric obstruction theories.

Tue, 26 Jan 2010

14:00 - 15:00
SR1

(HoRSe seminar) GW/stable pairs on K3 surfaces

Richard Thomas
(Imperial College London)
Abstract
The Katz-Klemm-Vafa formula is a conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. In genus 0 it reduces to the (proved) Yau-Zaslow formula. I will explain how the correspondence between stable pairs and Gromov-Witten theory for toric 3-folds (proved by Maulik-Oblomkov-Okounkov-Pandharipande), some calculations with stable pairs (due to Kawai-Yoshioka) and some deformation theory lead to a proof of the KKV formula.
(This is joint work with Davesh Maulik and Rahul Pandharipande. Only they understand the actual formulae. People who like modular forms are not encouraged to come to this talk.)
Subscribe to Imperial College London