Fri, 27 Feb 2009
10:00
DH 1st floor SR

Curing Cancer with accelerators

Ken Peach
(John Adams Institute for Accelerator Science)
Abstract

About a third of us will have a cancer during our lives, and we all know someone with the disease. Despite enormous progress in recent years, so that being diagnosed with cancer is not the death sentence that it once was, treatment can be aggressive, leading to short and long term reductions in quality of life. Cancer and its treatment is still feared, and rightly so - it is a major health concern. Destroying cancer non-invasively using protons or charged light ions such as carbon (Particle Therapy Cancer Research or PTCR) offers advantages over conventional radiotherapy using x-rays, since far lower radiation dose is delivered to healthy normal tissues. PT is also an alternative to radical cancer surgery. Most radiotherapy uses a small electron linear accelerator to accelerate an electron beams to a few million volts and then to generate hard x-rays, whereas CPT uses cyclotrons or synchrotrons to accelerate protons to a few hundred million volts, which themselves sterilise the tumour. More recently, a new concept in accelerators – the “non-scaling Fixed Field Alternating Gradient” accelerator – has been advanced, which offers the prospect of developing relatively compact, high acceleration rate accelerators for a variety of purposes, from neutrino factories and muon acceleration to cancer therapy. However, there are formidable technical challenges to be overcome, including resonance crossing. We have recently been awarded funding in the UK to construct a demonstrator non-scaling FFAG at the Daresbury laboratory (EMMA, the Electron Model with Many Applications), and to design a prototype machine for proton and carbon ion cancer therapy (PAMELA, the Particle Accelerator for MEdicaL Applications). I will describe some of the motivations for developing this new type of accelerator. Finally, although the physics of CPT says that it should be qualitatively and quantitatively better than conventional radiotherapy, the robust clinical analyses (for example, randomised control trials) have not been done, and the meta-analyses seem to suffer from large sample biases. The Particle Therapy Cancer Research Institute (part of the James Martin 21st Century School in Oxford) will study the clinical effectiveness of charged particle therapy to treat cancer, promoting its use in the UK and elsewhere on the basis of robust clinical evidence and analysis.

Subscribe to John Adams Institute for Accelerator Science