Mon, 02 Mar 2009

16:00 - 17:00
SR1

Classical Primality Testing

Sebastian Pancratz
(Mathematical Institute, Oxford)
Abstract

This talk will mention methods of testing whether a given integer is prime. Included topics are Carmichael numbers, Fermat and Euler pseudo-primes and results contingent on the Generalised Riemann Hypothesis.

Mon, 14 Nov 2005
14:15
DH 3rd floor SR

tba

Mr Christian Litterer
(Mathematical Institute, Oxford)
Mon, 17 Oct 2005
15:45
DH 3rd floor SR

Lattice gases and the Lov

Dr Alex Scott
(Mathematical Institute, Oxford)
Abstract

Given a family of independent events in a probability space, the probability

that none of the events occurs is of course the product of the probabilities

that the individual events do not occur. If there is some dependence between the

events, however, then bounding the probability that none occurs is a much less

trivial matter. The Lov

Mon, 10 Oct 2005
15:45
DH 3rd floor SR

Self-interacting Random Walks

Dr Pierre Tarres
(Mathematical Institute, Oxford)
Abstract

A self-interacting random walk is a random process evolving in an environment depending on its past behaviour.

The notion of Edge-Reinforced Random Walk (ERRW) was introduced in 1986 by Coppersmith and Diaconis [2] on a discrete graph, with the probability of a move along an edge being proportional to the number of visits to this edge. In the same spirit, Pemantle introduced in 1988 [5] the Vertex-Reinforced Random Walk (VRRW), the probability of move to an adjacent vertex being then proportional to the number of visits to this vertex (and not to the edge leading to the vertex). The Self-Interacting Diffusion (SID) is a continuous counterpart to these notions.

Although introduced by similar definitions, these processes show some significantly different behaviours, leading in their understanding to various methods. While the study of ERRW essentially requires some probabilistic tools, corresponding to some local properties, the comprehension of VRRW and SID needs a joint understanding of on one hand a dynamical system governing the general evolution, and on the other hand some probabilistic phenomena, acting as perturbations, and sometimes changing the nature of this dynamical system.

The purpose of our talk is to present our recent results on the subject [1,3,4,6].

Bibliography

[1] M. Bena

Subscribe to Mathematical Institute, Oxford