Thu, 02 Nov 2023

12:00 - 13:00
L3

Coarsening of thin films with weak condensation

Hangjie Ji
(North Carolina State University)
Abstract

A lubrication model can be used to describe the dynamics of a weakly volatile viscous fluid layer on a hydrophobic substrate. Thin layers of the fluid are unstable to perturbations and break up into slowly evolving interacting droplets. In this talk, we will present a reduced-order dynamical system derived from the lubrication model based on the nearest-neighbour droplet interactions in the weak condensation limit. Dynamics for periodic arrays of identical drops and pairwise droplet interactions are investigated which provide insights to the coarsening dynamics of a large droplet system. Weak condensation is shown to be a singular perturbation, fundamentally changing the long-time coarsening dynamics for the droplets and the overall mass of the fluid in two additional regimes of long-time dynamics. This is joint work with Thomas Witelski.

Tue, 24 Jan 2023
16:00
C3

Braided tensor categories as invariants of von Neumann algebras

Corey Jones
(North Carolina State University)
Abstract

In the operator algebraic approach to quantum field theory, the DHR category is a braided tensor category describing topological point defects of a theory with at least 1 (+1) dimensions. A single von Neumann algebra with no extra structure can be thought of as a 0 (+1) dimensional quantum field theory. In this case, we would not expect a braided tensor category of point defects since there are not enough dimensions to implement a braiding. We show, however, that one can think of central sequence algebras as operators localized ``at infinity", and apply the DHR recipe to obtain a braided tensor category of bimodules of a von Neumann algebra M, which is a Morita invariant. When M is a II_1 factor, the braided subcategory of automorphic objects recovers Connes' chi(M) and Jones' kappa(M). We compute this for II_1 factors arising naturally from subfactor theory and show that any Drinfeld center of a fusion category can be realized. Based on joint work with Quan Chen and Dave Penneys.

Fri, 21 Oct 2022

14:00 - 15:00
L6

Module categories for $\text{Tilt}(SL_{2k+1})$ from $\tilde{A}_{n-1}$-buildings

Emily McGovern
(North Carolina State University)
Further Information

We will be streaming this seminar in L6 but feel free to join online.

Abstract

We show that the category of vector bundles over the vertices of a locally finite $\tilde{A}_{n-1}$ building $\Delta$, $Vec(\Delta)$, has the structure of a $Tilt(SL_{2k+1})$ module category. This module category is the $q$-analogue of the $Tilt(SL_{2k+1})$ action on vector bundles over the $sl_n$ weight lattice.  Our construction of the $Tilt(SL_{2k+1})$ action on $Vec(\Delta)$ extends to $Vec(\Delta)^{G}$, its equivariantization, which gives us a class of non-standard $Tilt(SL_{2k+1})$ module categories. When $G$ acts simply transitively, this recovers the fiber functors of Jones.

Thu, 11 Mar 2021
14:00
Virtual

Structured matrix approximations via tensor decompositions

Arvind Saibaba
(North Carolina State University)
Abstract

We provide a computational framework for approximating a class of structured matrices (e.g., block Toeplitz, block banded). Our approach has three steps: map the structured matrix to tensors, use tensor compression algorithms, and map the compressed tensors back to obtain two different matrix representations --- sum of Kronecker products and block low-rank format. The use of tensor decompositions enable us to uncover latent structure in the matrices and lead to computationally efficient algorithms. The resulting matrix approximations are memory efficient, easy to compute with, and preserve the error due to the tensor compression in the Frobenius norm. While our framework is quite general, we illustrate the potential of our method on structured matrices from three applications: system identification, space-time covariance matrices, and image deblurring.

Joint work with Misha Kilmer (Tufts University)

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 09 Feb 2012

16:00 - 17:00
DH 1st floor SR

Shapes formed by Interacting Cracks

Karen Daniels
(North Carolina State University)
Abstract

Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed "en passant" crack pattern by fracturing a rectangular slab which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.

Subscribe to North Carolina State University