Mon, 29 May 2017

14:15 - 15:15
L4

Nonabelian Hodge spaces and nonlinear representation theory

Philip Boalch
(Orsay)
Abstract

The theory of connections on curves and Hitchin systems is something like a “global theory of Lie groups”, where one works over a Riemann surface rather than just at a point. We’ll describe how one can take this analogy a few steps further by attempting to make precise the class of rich geometric objects that appear in this story (including the non-compact case), and discuss their classification, outlining a theory of “Dynkin diagrams” as a step towards classifying some examples of such objects.

Mon, 27 Apr 2015
14:15
L4

Non-perturbative symplectic manifolds and non-commutative algebras

Philip Boalch
(Orsay)
Abstract

From a geometric viewpoint the irregular Riemann-Hilbert correspondence can be viewed as a machine that takes as input a simple
`additive' symplectic/Poisson manifold and it outputs a more complicated `multiplicative' symplectic/Poisson manifold. In the
simplest nontrivial example it converts the linear Poisson manifold Lie(G)^* into the dual Poisson Lie group G^* (which is the Poisson
manifold underlying the Drinfeld-Jimbo quantum group). This talk will firstly describe some more recent (and more complicated) examples of
such `nonperturbative symplectic/Poisson manifolds', i.e. symplectic spaces of Stokes/monodromy data or `wild character varieties'. Then
the natural generalisations (`fission algebras') of the deformed multiplicative preprojective algebras that occur will be discussed, some
of which are known to be related to Cherednik algebras.

Tue, 19 Nov 2013

17:00 - 18:00
C5

Measuring finiteness in groups

Francesco Matucci
(Orsay)
Abstract

Given a residually finite group, we analyse a growth function measuring the minimal index of a normal subgroup in a group which does not contain a given element. This growth (called residual finiteness growth) attempts to measure how ``efficient'' of a group is at being residually finite. We review known results about this growth, such as the existence of a Gromov-like theorem in a particular case, and explain how it naturally leads to the study of a second related growth (called intersection growth). Intersection growth measures asymptotic behaviour of the index of the intersection of all subgroups of a group that have index at most n. In this talk I will introduce these growths and give an overview of some cases and properties.

This is joint work with Ian Biringer, Khalid Bou-Rabee and Martin Kassabov.

Tue, 28 May 2013
17:00
L2

Commensurating actions and irreducible lattices

Yves Cornulier
(Orsay)
Abstract

We will first recall the known notion of commensurating actions

and its link to actions on CAT(0) cube complexes. We define a

group to have Property FW if every isometric action on a CAT(0)

cube complex has a fixed point. We conjecture that every

irreducible lattice in a semisimple Lie group of higher rank has

Property FW, and will give some instances beyond the trivial

case of Kazhdan groups.

Mon, 15 Nov 2010

15:45 - 16:45
L3

$L^p$ cohomology and pinching

Pierre Pansu
(Orsay)
Abstract

We prove that no Riemannian manifold quasiisometric to

complex hyperbolic plane can have a better curvature pinching. The proof

uses cup-products in $L^p$-cohomology.

Subscribe to Orsay