Tue, 02 Nov 2021
12:00
L5

Worldsheet description of Kerr interactions

Alex Ochirov
(Oxford)
Abstract

The recent progress of applying QFT methods to classical GR has provided a new perspective on the Kerr black hole solution. Its leading gravitational interactions are known to involve an infinite tower of spin-induced multipoles with unit coupling constants. In this talk, I will present a novel form of the classical worldline action that implements these multipole interactions within a single worldsheet integral, which is inspired by the Newman-Janis shift relationship of the Kerr and Schwarzschild solutions. I will also discuss connections to our recently discovered ability to model such interactions using a certain family of scattering amplitudes, as well as a simple double-copy property hidden within. 

This will be an in-person seminar run in hybrid mode.

Tue, 19 Oct 2021
14:00
L5

Sharp stability of the Brunn-Minkowski inequality

Peter Van Hintum
(Oxford)
Abstract

I'll consider recent results concerning the stability of the classic Brunn-Minkowski inequality. In particular, I will focus on the linear stability for homothetic sets. Resolving a conjecture of Figalli and Jerison, we showed there are constants $C,d>0$ depending only on $n$ such that for every subset $A$ of $\mathbb{R}^n$ of positive measure, if $|(A+A)/2 - A| \leq d |A|$, then $|co(A) - A| \leq C |(A+A)/2 - A|$ where $co(A)$ is the convex hull of $A$. The talk is based on joint work with Hunter Spink and Marius Tiba.

Mon, 08 Nov 2021

16:00 - 17:00
C1

TBA

George Robinson
(Oxford)
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

Mon, 25 Oct 2021

16:00 - 17:00
C2

Hyperelliptic continued fractions

Francesco Ballini
(Oxford)
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

Mon, 11 Oct 2021

16:00 - 17:00
C1

Computing p-adic L-functions of Hecke characters

Håvard Damm-Johnsen
(Oxford)
Abstract

In 1973, Serre defined $p$-adic modular forms as limits of modular forms, and constructed the Leopoldt-Kubota $L$-function as the constant term of a limit of Eisenstein series. This was extended by Deligne-Ribet to totally real number fields, and Lauder and Vonk have developed an algorithm for interpolating $p$-adic $L$-functions of such fields using Serre's idea. We explain what an $L$-function is and why you should care, and then move on to giving an overview of the algorithm, extensions, and applications.

Mon, 18 Oct 2021
12:45
L4

Nonperturbative Mellin Amplitudes

Joao Silva
(Oxford)
Abstract

We discuss the Mellin amplitude formalism for Conformal Field Theories
(CFT's).  We state the main properties of nonperturbative CFT Mellin
amplitudes: analyticity, unitarity, Polyakov conditions and polynomial
boundedness at infinity. We use Mellin space dispersion relations to
derive a family of sum rules for CFT's. These sum rules suppress the
contribution of double twist operators. We apply the Mellin sum rules
to: the epsilon-expansion and holographic CFT's.

Mon, 15 Nov 2021
12:45
L4

Kondo line defect and affine oper/Gaudin correspondence

Jingxiang Wu
(Oxford)
Abstract

It is well-known that the spectral data of the Gaudin model associated to a finite semisimple Lie algebra is encoded by the differential data of certain flat connections associated to the Langlands dual Lie algebra on the projective line with regular singularities, known as oper/Gaudin correspondence. Recently, some progress has been made in understanding the correspondence associated with affine Lie algebras. I will present a physical perspective from Kondo line defects, physically describing a local impurity chirally coupled to the bulk 2d conformal field theory. The Kondo line defects exhibit interesting integrability properties and wall-crossing behaviors, which are encoded by the generalized monodromy data of affine opers. In the physics literature, this reproduces the known ODE/IM correspondence. I will explain how the recently proposed 4d Chern Simons theory provides a new perspective which suggests the possibility of a physicists’ proof. 

Mon, 08 Nov 2021
13:00
L2

TBA

Matteo Sacchi
(Oxford)
Further Information

NOTE UNUSUAL TIME: 1pm

Abstract
 In this talk I will discuss an algorithm to piecewise dualise linear quivers into their mirror duals. This applies to the 3d N=4 version of mirror symmetry as well as its recently introduced 4d counterpart, which I will review. The algorithm uses two basic duality moves, which mimic the local S-duality of the 5-branes in the brane set-up of the 3d theories, and the properties of the S-wall. The S-wall is known to correspond to the N=4 T[SU(N)] theory in 3d and I will argue that its 4d avatar corresponds to an N=1 theory called E[USp(2N)], which flows to T[SU(N)] in a suitable 3d limit. All the basic duality moves and S-wall properties needed in the algorithm are derived in terms of some more fundamental Seiberg-like duality, which is the Intriligator--Pouliot duality in 4d and the Aharony duality in 3d.

 

Mon, 28 Jun 2021
11:30
Virtual

Feynman integrals from the viewpoint of Picard-Lefschetz theory

Marko Berghoff
(Oxford)
Abstract

I will present work in progress with Erik Panzer, Matteo Parisi and Ömer Gürdoğan on the analytic structure of Feynman(esque) integrals: We consider integrals of meromorphic differential forms over relative cycles in a compact complex manifold, the underlying geometry encoded in a certain (parameter dependant) subspace arrangement (e.g. Feynman integrals in their parametric representation). I will explain how the analytic struture of such integrals can be studied via methods from differential topology; this is the seminal work by Pham et al (using tools and methods developed by Leray, Thom, Picard-Lefschetz etc.). Although their work covers a very general setup, the case we need for Feynman integrals has never been worked out in full detail. I will comment on the gaps that have to be filled to make the theory work, then discuss how much information about the analytic structure of integrals can be derived from a careful study of the corresponding subspace arrangement.

Tue, 01 Jun 2021
15:30
Virtual

The Hypersimplex VS the Amplituhedron - Signs, Triangulations, Clusters and Eulerian Numbers

Matteo Parisi
(Oxford)
Abstract

In this talk I will discuss a striking duality, T-duality, we discovered between two seemingly unrelated objects: the hypersimplex and the m=2 amplituhedron. We draw novel connections between them and prove many new properties. We exploit T-duality to relate their triangulations and generalised triangles (maximal cells in a triangulation). We subdivide the amplituhedron into chambers as the hypersimplex can be subdivided into simplices - both enumerated by Eulerian numbers. Along the way, we prove several conjectures on the amplituhedron and find novel cluster-algebraic structures, e.g. a generalisation of cluster adjacency.

This is based on the joint work with Lauren Williams and Melissa Sherman-Bennett https://arxiv.org/abs/2104.08254.

Subscribe to Oxford