Tue, 12 Jun 2018

14:30 - 15:00
L5

A dimensionality reduction technique for global optimisation

Adilet Otemissov
(Oxford University)
Abstract


(Joint work with Coralia Cartis) The problem of finding the most extreme value of a function, also known as global optimization, is a challenging task. The difficulty is associated with the exponential increase in the computational time for a linear increase in the dimension. This is known as the ``curse of dimensionality''. In this talk, we demonstrate that such challenges can be overcome for functions with low effective dimensionality --- functions which are constant along certain linear subspaces. Such functions can often be found in applications, for example, in hyper-parameter optimization for neural networks, heuristic algorithms for combinatorial optimization problems and complex engineering simulations.
We propose the use of random subspace embeddings within a(ny) global minimisation algorithm, extending the approach in Wang et al. (2013). We introduce a new framework, called REGO (Random Embeddings for GO), which transforms the high-dimensional optimization problem into a low-dimensional one. In REGO, a new low-dimensional problem is formulated with bound constraints in the reduced space and solved with any GO solver. Using random matrix theory, we provide probabilistic bounds for the success of REGO, which indicate that this is dependent upon the dimension of the embedded subspace and the intrinsic dimension of the function, but independent of the ambient dimension. Numerical results demonstrate that high success rates can be achieved with only one embedding and that rates are for the most part invariant with respect to the ambient dimension of the problem.
 

Tue, 29 May 2018

14:00 - 15:00
L5

Formulations of Inverse Problems

Chris Farmer
(Oxford University)
Abstract

This talk will review the main Tikhonov and Bayesian smoothing formulations of inverse problems for dynamical systems with partially observed variables and parameters. The main contenders: strong-constraint, weak-constraint and penalty function formulations will be described. The relationship between these formulations and associated optimisation problems will be revealed.  To close we will indicate techniques for maintaining sparsity and for quantifying uncertainty.

Mon, 11 Jun 2018
14:00
N3.12

Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge

Renaud Lamboitte
(Oxford University)
Abstract

In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors' conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.

Fri, 27 Apr 2018
12:00
N3.12

Multiparameter Persistence Landscapes

Oliver Vipond
(Oxford University)
Abstract

Single parameter persistent homology has proven to be a useful data analytic tool and single parameter persistence modules enjoy a concise description as a barcode, a complete invariant. [Bubenik, 2012] derived a topological summary closely related to the barcode called the persistence landscape which is amenable to statistical analysis and machine learning techniques.

The theory of multidimensional persistence modules is presented in [Carlsson and Zomorodian, 2009] and unlike the single parameter case where one may associate a barcode to a module, there is not an analogous complete discrete invariant in the multiparameter setting. We propose an incomplete invariant derived from the rank invariant associated to a multiparameter persistence module, which generalises the single parameter persistence landscape in [Bubenik, 2012] and satisfies similar stability properties with respect to the interleaving distance. Our invariant naturally lies in a Banach Space and so is naturally endowed with a distance function, it is also well suited to statistical analysis since there is a uniquely defined mean associated to multiple landscapes. We shall present computational examples in the 2-parameter case using the RIVET software presented in [Lesnick and Wright, 2015].

Thu, 03 May 2018
16:00
C5

TBA

Joshua Jackson
(Oxford University)
Wed, 09 May 2018
16:00
C5

Traces and hermitian objects in higher category theory

Jan Steinebrunner
(Oxford University)
Abstract

Given an endomorphism f:X --> X of a 'dualisable' object in a symmetric monoidal category, one can define its trace Tr(f). It turns out that the trace is 'universal' among the scalars we can produce from f. To prove this we will think of the 1d framed bordism category as the 'walking dualisable object' (using the cobordism hypothesis) and then apply the Yoneda lemma.
Employing similar techniques we can define 'hermitian' objects (generalising hermitian vector spaces) and prove that there is a 1-1 correspondence between Hermitian structures on a fixed object X and self-adjoint automorphisms of X. If time permits I will sketch how this relates to hermitian K-theory.

While all results of the talk hold for infinity-categories, they work equally well for ordinary categories. Therefore no knowledge of higher category theory is needed to follow the talk.

Thu, 14 Jun 2018
16:00
C5

A primer on perverse sheaves

Aurelio Carlucci
(Oxford University)
Abstract

This talk will be a general introduction to perverse sheaves and their applications to the study of algebraic varieties, with a view towards enumerative geometry. It is aimed at non-experts.

We will start by considering constructible sheaves and local systems, and how they relate to the notion of stratification: this offers some insight in the relationship with intersection cohomology, which perverse sheaves generalise in a precise sense.

We will then introduce some technical notions, like t-structures, perversities, and intermediate extensions, in order to define perverse sheaves and explore their properties.

Time permitting, we will consider the relevant example of nearby and vanishing cycle functors associated with a critical locus, their relationship with the (hyper)-cohomology of the Milnor fibre and how this is exploited to define refined enumerative invariants in Donaldson-Thomas theory.

Thu, 07 Jun 2018
16:00
C5

From Equivariant Cohomology to Equivariant Symplectic Cohomology

Todd Liebenschutz-Jones
(Oxford University)
Abstract

Equivariant cohomology is adapted from ordinary cohomology to better capture the action of a group on a topological space. In Floer theory, given an autonomous Hamiltonian, there is a natural action of the circle on 1-periodic flowlines given by time translation. Combining these two ideas leads to the definition of  $S^1$-equivariant symplectic cohomology. In this talk, I will introduce these ideas and explain how they are related. I will not assume prior knowledge of Floer theory.

Subscribe to Oxford University