Wed, 03 Feb 2021
10:00
Virtual

Asymptotic Cones and the Filling Order of a Metric Space

Patrick Nairne
(Oxford University)
Abstract

The asymptotic cone of a metric space X is what you see when you "look at X from infinitely far away". The asymptotic cone therefore captures much of the large scale geometry of the metric space. Furthermore, the construction often produces a smooth space from a discrete one, allowing us to apply the techniques of calculus. Notably, Gromov used asymptotic cones in his proof that finitely generated groups of polynomial growth are virtually nilpotent.

In the talk I will define asymptotic cones using the language of ultrafilters and ultralimits. We will then look at the particular cases of asymptotic cones of virtually nilpotent groups and hyperbolic metric spaces. At the end, we will prove a result of Gromov which relates the fundamental group of the asymptotic cone to the filling order of the underlying metric space.

Wed, 27 Jan 2021
10:00
Virtual

Triangulation Complexity of Mapping Tori

Adele Jackson
(Oxford University)
Abstract

A major tool used to understand manifolds is understanding how different measures of complexity relate to one another. One particularly combinatorial measure of the complexity of a 3-manifold M is the minimal number of tetrahedra in a simplicial complex homeomorphic to M, called the triangulation complexity of M. A natural question is whether we can relate this with more geometric measures of the complexity of a manifold, especially understanding these relationships as combinatorial complexity grows.

In the case when the manifold fibres over the circle, a recent theorem of Marc Lackenby and Jessica Purcell gives both an upper and lower bound on the triangulation complexity in terms of a geometric invariant of the gluing map (its translation length in the triangulation graph). We will discuss this result as well as a new result concerning what happens when we alter the gluing map by a Dehn twist.

Tue, 27 Oct 2020

14:15 - 15:15
Virtual

Parameterising unramified nilpotent orbits using dual Springer parameters

Emile Okada
(Oxford University)
Abstract

The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.

Tue, 24 Nov 2020

14:15 - 15:15
Virtual

Minkowski's theorem, and a question of Serre

Michael Collins
(Oxford University)
Abstract

Let $p$ be a prime. Minkowski (1887) gave a bound for the order of a finite $p$-subgroup of the linear group $\mathsf{GL}(n,\mathbf Z)$ as a function of $n$, and this necessarily holds for $p$-subgroups of $\mathsf{GL}(n,\mathbf Q)$ also. A few years ago, Serre asked me whether some analogous result might be obtained for subgroups of $\mathsf{GL}(n,\mathbf C)$ using the methods I employed to obtain optimal bounds for Jordan's theorem.

Bounds can be so obtained and I will explain how but, while Minkowski's bound is achieved, no linear bound (as Serre initially suggested) can be achieved. I will discuss progress on this problem and the issues that arise in seeking an ideal form for the solution.

Tue, 10 Nov 2020

14:15 - 15:15
Virtual

What is a unipotent representation?

Lucas Mason-Brown
(Oxford University)
Abstract

Let $G$ be a connected reductive algebraic group, and let $G(\mathbb{F}_q)$ be its group of $\mathbb{F}_q$-rational points. Denote by $\mathrm{Irr}(G(\mathbb{F}_q))$ the set of (equivalence classes) of irreducible finite-dimensional representations. Deligne and Lusztig defined a finite subset $$\mathrm{Unip}(G(\mathbb{F}_q)) \subset \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$$ 
of unipotent representations. These representations play a distinguished role in the representation theory of $G(\mathbb{F}_q)$. In particular, the classification of $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ reduces to the classification of $\mathrm{Unip}(G(\mathbb{F}_q))$. 

Now replace $\mathbb{F}_q$ with a local field $k$ and replace $\mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q))$ with $\mathrm{Irr}_{\mathrm{u}}(G(k))$ (irreducible unitary representations). Vogan has predicted the existence of a finite subset 
$$\mathrm{Unip}(G(k)) \subset \mathrm{Irr}_{\mathrm{u}}(G(k))$$ 
which completes the following analogy
$$\mathrm{Unip}(G(k)) \text{ is to } \mathrm{Irr}_{\mathrm{u}}(G(k)) \text{ as } \mathrm{Unip}(G(\mathbb{F}_q)) \text{ is to } \mathrm{Irr}_{\mathrm{fd}}(G(\mathbb{F}_q)).$$
In this talk I will propose a definition of $\mathrm{Unip}(G(k))$ when $k = \mathbb{C}$. The definition is geometric and case-free. The representations considered include all of Arthur's, but also many others. After sketching the definition and cataloging its properties, I will explain a classification of $\mathrm{Unip}(G(\mathbb{C}))$, generalizing the well-known result of Barbasch-Vogan for Arthur's representations. Time permitting, I will discuss some speculations about the case of $k=\mathbb{R}$.

This talk is based on forthcoming joint work with Ivan Loseu and Dmitryo Matvieievskyi.

Tue, 13 Oct 2020

14:15 - 15:15
Virtual

The Dirac inequality, Weyl groups, and isolated unitary representations

Dan Ciubotaru
(Oxford University)
Abstract

In the classical setting of real semisimple Lie groups, the Dirac inequality (due to Parthasarathy) gives a necessary condition that the infinitesimal character of an irreducible unitary representation needs to satisfy in terms of the restriction of the representation to the maximal compact subgroup. A similar tool was introduced in the setting of representations of p-adic groups in joint work with Barbasch and Trapa, where the necessary unitarity condition is phrased in terms of the semisimple parameter in the Kazhdan-Lusztig parameterization and the hyperspecial parahoric restriction. I will present several consequences of this inequality to the problem of understanding the unitary dual of the p-adic group, in particular, how it can be used in order to exhibit several isolated "extremal" unitary representations and to compute precise "spectral gaps" for them.

Tue, 13 Oct 2020

14:00 - 15:00
Virtual

Variance, covariance and assortativity on graphs

Renaud Lambiotte
(Oxford University)
Abstract

We develop a theory to measure the variance and covariance of probability distributions defined on the nodes of a graph, which takes into account the distance between nodes. Our approach generalizes the usual (co)variance to the setting of weighted graphs and retains many of its intuitive and desired properties. As a particular application, we define the maximum-variance problem on graphs with respect to the effective resistance distance, and characterize the solutions to this problem both numerically and theoretically. We show how the maximum-variance distribution can be interpreted as a core-periphery measure, illustrated by the fact that these distributions are supported on the leaf nodes of tree graphs, low-degree nodes in a configuration-like graph and boundary nodes in random geometric graphs. Our theoretical results are supported by a number of experiments on a network of mathematical concepts, where we use the variance and covariance as analytical tools to study the (co-)occurrence of concepts in scientific papers with respect to the (network) relations between these concepts. Finally, I will draw connections to related notion of assortativity on networks, a network analogue of correlation used to describe how the presence and absence of edges covaries with the properties of nodes.

https://arxiv.org/abs/2008.09155

Tue, 19 Jan 2021
12:00
Virtual

Quantum State Reduction: its Interrelation with Relativity

Roger Penrose
(Oxford University)
Abstract

I take the “collapse of the wave-function” to be an objective physical process—OR (the Objective Reduction of the quantum state)—which I argue to be intimately related to a basic conflict between the principles of equivalence and quantum linear superposition, which leads us to a fairly specific formula (in agreement with one found earlier by Diósi) for the timescale for OR to take place. Moreover, we find that for consistency with relativity, OR needs to be “instantaneous” but with curious retro-active features. By extending an argument due to Donadi, for EPR situations, we find a fundamental conflict with “gradualist” models such as CSL, in which OR is taken to be the result of a (stochastic) evolution of quantum amplitudes.

Wed, 03 Jun 2020
10:00
Virtual

An Introduction to Fusion Categories

Thibault Decoppet
(Oxford University)
Abstract

Motivation for the study of fusion categories is twofold: Fusion categories arise in wide array of mathematical subjects, and provide the necessary input for some fascinating topological constructions. We will carefully define what fusion categories are, and give representation theoretic examples. Then, we will explain how fusion categories are inherently finite combinatorial objects. We proceed to construct an example that does not come from group theory. Time permitting, we will go some way towards introducing so-called modular tensor categories.

 

Wed, 20 May 2020
16:00
Virtual

TBA

Alice Kerr
(Oxford University)
Subscribe to Oxford University