Thu, 07 Feb 2019

16:00 - 17:00
L6

Bohr sets and multiplicative diophantine approximation

Sam Chow
(Oxford University)
Abstract

Gallagher's theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. I'll discuss some recent refinements of Gallagher's theorem, one of which is joint work with Niclas Technau. A key new ingredient is the correspondence between Bohr sets and generalised arithmetic progressions. It is hoped that these are the first steps towards a metric theory of multiplicative diophantine approximation on manifolds. 

Wed, 06 Feb 2019
16:00
C1

Cross ratios on boundaries of negatively curved spaces

Elia Fioravanti
(Oxford University)
Abstract

I will give a self-contained introduction to the theory of cross ratios on boundaries of Gromov hyperbolic and CAT(-1) spaces, focussing on the connections to the following two questions. When are two spaces with the 'same' Gromov boundary isometric/quasi-isometric? Are closed Riemannian manifolds completely determined (up to isometry) by the lengths of their closed geodesics?

Wed, 23 Jan 2019
16:00
C1

Commensurator rigidity from actions on graphs

Richard Wade
(Oxford University)
Abstract

I will give a description of a method introduced by N. Ivanov to study the abstract commensurator of a group by using a rigid action of that group on a graph. We will sketch Ivanov's theorem regarding the abstract commensurator of a mapping class group. Time permitting, I will describe how these methods are used in some of my recent work with Horbez on outer automorphism groups of free groups.

Tue, 22 Jan 2019

12:45 - 13:30
C5

Wave attenuation by flexible vegetation

Clint Wong
(Oxford University)
Abstract

Coastal vegetation has a well-known effect of attenuating waves; however, quantifiable measures of attenuation for general wave and vegetation scenarios are not well known. On the plant scale, there are extensive studies in predicting the dynamics of a single plant in an oscillatory flow. On the coastal scale however, there are yet to be compact models which capture the dynamics of both the flow and vegetation, when the latter exists in the form of a dense canopy along the bed. In this talk, we will discuss the open questions in the field and the modelling approaches involved. In particular, we investigate how micro-scale effects can be homogenised in space and how periodic motions can be averaged in time.

Wed, 16 Jan 2019
16:00
C1

Links between dimensions three and four

Matthias Nagel
(Oxford University)
Abstract

Knot theory investigates the many ways of embedding a circle into the three-dimensional sphere. The study of these embeddings is not only important for understanding three-dimensional manifolds, but is also intimately related to many new and surprising phenomena appearing in dimension four. I will discuss how four-dimensional interpretations of some invariants can help us understand surfaces that bound a given link (embedding of several disjoint circles).

Thu, 17 Jan 2019

16:00 - 17:00
L6

Elliptic analogs of multiple zeta values

Nils Matthes
(Oxford University)
Abstract

Multiple zeta values are generalizations of the special values of Riemann's zeta function at positive integers. They satisfy a large number of algebraic relations some of which were already known to Euler. More recently, the interpretation of multiple zeta values as periods of mixed Tate motives has led to important new results. However, this interpretation seems insufficient to explain the occurrence of several phenomena related to modular forms.

The aim of this talk is to describe an analog of multiple zeta values for complex elliptic curves introduced by Enriquez. We will see that these define holomorphic functions on the upper half-plane which degenerate to multiple zeta values at cusps. If time permits, we will explain how some of the rather mysterious modular phenomena pertaining to multiple zeta values can be interpreted directly via the algebraic structure of their elliptic analogs.

Thu, 28 Feb 2019
16:00
C3

A biased view of GRT

Filip Zivanovic
(Oxford University)
Abstract

Standard representation theory transforms groups=algebra into vector spaces = (linear) algebra. The modern approach, geometric representation theory constructs geometric objects from algebra and captures various algebraic representations through geometric gadgets/invariants on these objects. This field started with celebrated Borel-Weil-Bott and Beilinson-Bernstein theorems but equally is in rapid expansion nowadays. I will start from the very beginnings of this field and try to get to the recent developments (time permitting).

Mon, 03 Jun 2019
14:15
L4

Lie algebras in finite and mixed characteristic.

Lukas Brantner
(Oxford University)
Abstract

Partition Lie algebras are generalisations of rational differential graded Lie algebras which, by a recent result of Mathew and myself, govern the formal deformation theory of algebro-geometric objects in finite and mixed characteristic. In this talk, we will take a closer look at these new gadgets and discuss some of their applications in algebra and topology

Thu, 07 Feb 2019
16:00
C4

The Nielsen-Thurston theory of surface automorphisms

Mehdi Yazdi
(Oxford University)
Abstract

I will give an overview of the Nielsen-Thurston theory of the mapping class group and its connection to hyperbolic geometry and dynamics. Time permitting, I will discuss the surface entropy conjecture and a theorem of Hamenstadt on entropies of `generic' elements of the mapping class group. No prior knowledge of the concepts involved is required.

Thu, 31 Jan 2019
16:00
C4

Holonomic D-modules, b-functions, and coadmissibility

Andreas Bode
(Oxford University)
Abstract

Since differentiation generally lowers exponents, it is straightforward that the space of Laurent polynomials $\mathbb{C}[x, x^{-1}]$ is a finitely generated module over the ring of differential operators $\mathbb{C}[x, \mathrm{d}/\mathrm{d}x]$. This innocent looking fact has been vastly generalized to a statement about holonomic D-modules, using the beautiful theory of b-functions (or Bernstein—Sato polynomials). I will give an overview of the classical theory before discussing some recent developments concerning a $p$-adic analytic analogue, which is joint work with Thomas Bitoun.

Subscribe to Oxford University