Tue, 09 Mar 2021
14:00
Virtual

Tail asymptotics for extinction times of self-similar fragmentations

Bénédicte Haas
(Paris 13)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Self-similar fragmentation processes are random models for particles that are subject to successive fragmentations. When the index of self-similarity is negative the fragmentations intensify as the masses of particles decrease. This leads to a shattering phenomenon, where the initial particle is entirely reduced to dust - a set of zero-mass particles - in finite time which is what we call the extinction time. Equivalently, these extinction times may be seen as heights of continuous compact rooted trees or scaling limits of heights of sequences of discrete trees. Our objective is to set up precise bounds for the large time asymptotics of the tail distributions of these extinction times.

Fri, 21 Oct 2011
14:15
DH 1st floor SR

Multivariate utility maximization with proportional transaction costs and random endowment

Luciano Campi
(Paris 13)
Abstract

Abstract: In this paper we deal with a utility maximization problem at finite horizon on a continuous-time market with conical (and time varying) constraints (particularly suited to model a currency market with proportional transaction costs). In particular, we extend the results in \cite{CO} to the situation where the agent is initially endowed with a random and possibly unbounded quantity of assets. We start by studying some basic properties of the value function (which is now defined on a space of random variables), then we dualize the problem following some convex analysis techniques which have proven very useful in this field of research. We finally prove the existence of a solution to the dual and (under an additional boundedness assumption on the endowment) to the primal problem. The last section of the paper is devoted to an application of our results to utility indifference pricing. This is a joint work with G. Benedetti (CREST).

Tue, 01 Jun 2010

15:45 - 16:45
L3

(HoRSe seminar) Realizations of motives

Denis-Charles Cisinski
(Paris 13)
Abstract

A categorification of cycle class maps consists to define

realization functors from constructible motivic sheaves to other

categories of coefficients (e.g. constructible $l$-adic sheaves), which are compatible with the six operations. Given a field $k$, we

will describe a systematic construction, which associates,

to any cohomology theory $E$, represented in $DM(k)$, a

triangulated category of constructible $E$-modules $D(X,E)$, for $X$

of finite type over $k$, endowed with a realization functor from

the triangulated category of constructible motivic sheaves over $X$.

In the case $E$ is either algebraic de Rham cohomology (with $char(k)=0$), or $E$ is $l$-adic cohomology, one recovers in this way the triangulated categories of $D$-modules or of $l$-adic sheaves. In the case $E$ is rigid cohomology (with $char(k)=p>0$), this construction provides a nice system of $p$-adic coefficients which is closed under the six operations.

Tue, 01 Jun 2010

14:00 - 15:00
L2

(HoRSe seminar) Motivic sheaves over excellent schemes

Denis-Charles Cisinski
(Paris 13)
Abstract

Starting from Morel and Voevodsky's stable homotopy theory of schemes, one defines, for each noetherian scheme of finite dimension $X$, the triangulated category $DM(X)$ of motives over $X$ (with rational coefficients). These categories satisfy all the the expected functorialities (Grothendieck's six operations), from

which one deduces that $DM$ also satisfies cohomological proper

descent. Together with Gabber's weak local uniformisation theorem,

this allows to prove other expected properties (e.g. finiteness

theorems, duality theorems), at least for motivic sheaves over

excellent schemes.

Subscribe to Paris 13