Fri, 26 Feb 2010

10:00 - 11:15
DH 1st floor SR

Microscopic and macroscopic modeling of active suspensions

Jorn Dunkel
(Physics, Oxford)
Abstract

Micron-sized bacteria or algae operate at very small Reynolds numbers.

In this regime, inertial effects are negligible and, hence, efficient

swimming strategies have to be different from those employed by fish

or bigger animals. Mathematically, this means that, in order to

achieve locomotion, the swimming stroke of a microorganism must break

the time-reversal symmetry of the Stokes equations. Large ensembles of

bacteria or algae can exhibit rich collective dynamics (e.g., complex

turbulent patterns, such as vortices or spirals), resulting from a

combination of physical and chemical interactions. The spatial extent

of these structures typically exceeds the size of a single organism by

several orders of magnitude. One of our current projects in the Soft

and Biological Matter Group aims at understanding how the collective

macroscopic behavior of swimming microorganisms is related to their

microscopic properties. I am going to outline theoretical and

computational approaches, and would like to discuss technical

challenges that arise when one tries to derive continuum equations for

these systems from microscopic or mesoscopic models.

Subscribe to Physics, Oxford