Tue, 16 Jul 2024

16:00 - 17:00
C4

Homotopy in Cuntz classes of Z-stable C*-algebras

Andrew Toms
(Purdue University)
Abstract

The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra.  It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra.  Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra.  This generalizes a known result from the setting of real rank zero C*-algebras.

Mon, 05 May 2014

17:00 - 18:00
L6

Frequency functions, monotonicity formulas, and the thin obstacle problem

Donatella Danielli-Garofalo
(Purdue University)
Abstract

Monotonicity formulas play a pervasive role in the study of variational inequalities and free boundary problems. In this talk we will describe a new approach to a classical problem, namely the thin obstacle (or Signorini) problem, based on monotonicity properties for a family of so-called frequency functions.

Subscribe to Purdue University