Fri, 21 Feb 2020

15:00 - 16:00
N3.12

Two Models of Random Simplicial Complexes

Lewis Mead
(Queen Mary University of London)
Abstract

The talk will introduce two general models of random simplicial complexes which extend the highly studied Erdös-Rényi model for random graphs. These models include the well known probabilistic models of random simplicial complexes from Costa-Farber, Kahle, and Linial-Meshulam as special cases. These models turn out to have a satisfying Alexander duality relation between them prompting the hope that information can be transferred for free between them. This turns out to not quite be the case with vanishing probability parameters, but when all parameters are uniformly bounded the duality relation works a treat. Time permitting I may talk about the Rado simplicial complex, the unique (with probability one) infinite random simplicial complex.
This talk is based on various bits of joint work with Michael Farber, Tahl Nowik, and Lewin Strauss.

Fri, 07 Jun 2019

12:00 - 13:00
L4

Finding and Imposing Qualitative Properties in Data

Primoz Skraba
(Queen Mary University of London)
Abstract

Data analysis techniques are often highly domain specific - there are often certain patterns which should be in certain types of data but may not be apparent in data. The first part of the talk will cover a technique for finding such patterns through a tool which combines visual analytics and machine learning to provide insight into temporal multivariate data. The second half of the talk will discuss recent work on imposing high level geometric  structure into continuous optimizations including deep neural networks.
 

Mon, 05 Nov 2018
15:45
L6

Random graphs with constant r-balls

David Ellis
(Queen Mary University of London)
Abstract


Let F be a fixed infinite, vertex-transitive graph. We say a graph G is `r-locally F' if for every vertex v of G, the ball of radius r and centre v in G is isometric to the ball of radius r in F. For each positive integer n, let G_n = G_n(F,r) be a graph chosen uniformly at random from the set of all unlabelled, n-vertex graphs that are r-locally F. We investigate the properties that the random graph G_n has with high probability --- i.e., how these properties depend upon the fixed graph F. 
We show that if F is a Cayley graph of a torsion-free group of polynomial growth, then there exists a positive integer r_0 such that for every integer r at least r_0, with high probability the random graph G_n = G_n(F,r) defined above has largest component of size between n^{c_1} and n^{c_2}, where 0 < c_1 < c_2  < 1 are constants depending upon F alone, and moreover that G_n has at least exp(poly(n)) automorphisms. This contrasts sharply with the random d-regular graph G_n(d) (which corresponds to the case where F is replaced by the infinite d-regular tree).
Our proofs use a mixture of results and techniques from group theory, geometry and combinatorics, including a recent and beautiful `rigidity' result of De La Salle and Tessera.
We obtain somewhat more precise results in the case where F is L^d (the standard Cayley graph of Z^d): for example, we obtain quite precise estimates on the number of n-vertex graphs that are r-locally L^d, for r at least linear in d, using classical results of Bieberbach on crystallographic groups.
Many intriguing open problems remain: concerning groups with torsion, groups with faster than polynomial growth, and what happens for more general structures than graphs.
This is joint work with Itai Benjamini (Weizmann Institute).
 

Tue, 11 Oct 2016
14:30
L6

Some applications of the p-biased measure to Erdős-Ko-Rado type problems

David Ellis
(Queen Mary University of London)
Abstract

'Erdős-Ko-Rado type problems' are well-studied in extremal combinatorics; they concern the sizes of families of objects in which any two (or any $r$) of the objects in the family 'agree', or 'intersect', in some way.

If $X$ is a finite set, the '$p$-biased measure' on the power-set of $X$ is defined as follows: choose a subset $S$ of $X$ at random by including each element of $X$ independently with probability $p$. If $\mathcal{F}$ is a family of subsets of $X$, one can consider the $p$-biased measure of $\mathcal{F}$, denoted by $\mu_p(\mathcal{F})$, as a function of $p$. If $\mathcal{F}$ is closed under taking supersets, then this function is an increasing function of $p$. Seminal results of Friedgut and Friedgut-Kalai give criteria under which this function has a 'sharp threshold'. Perhaps surprisingly, a careful analysis of the behaviour of this function also yields some rather strong results in extremal combinatorics which do not explicitly mention the $p$-biased measure - in particular, in the field of Erdős-Ko-Rado type problems. We will discuss some of these, including a recent proof of an old conjecture of Frankl that a symmetric three-wise intersecting family of subsets of $\{1,2,\ldots,n\}$ has size $o(2^n)$, and some 'stability' results characterizing the structure of 'large' $t$-intersecting families of $k$-element subsets of $\{1,2,\ldots,n\}$. Based on joint work with (subsets of) Nathan Keller, Noam Lifschitz and Bhargav Narayanan.

Tue, 14 Oct 2014

14:30 - 15:30
L6

The structure of graphs which are locally indistinguishable from a lattice.

David Ellis
(Queen Mary University of London)
Abstract

We study the properties of finite graphs in which the ball of radius $r$ around each vertex induces a graph isomorphic to some fixed graph $F$. (Such a graph is said to be $r$-locally-$F$.) This is a natural extension of the study of regular graphs, and of the study of graphs of constant link. We focus on the case where $F$ is $\mathbb{L}^d$, the $d$-dimensional integer lattice. We obtain a characterisation of all the finite graphs in which the ball of radius $3$ around each vertex is isomorphic to the ball of radius $3$ in $\mathbb{L}^d$, for each integer $d$. These graphs have a very rigidly proscribed global structure, much more so than that of $(2d)$-regular graphs. (They can be viewed as quotient lattices in certain 'flat orbifolds'.) Our results are best possible in the sense that '3' cannot be replaced with '2'. Our proofs use a mixture of techniques and results from combinatorics, algebraic topology and group theory. We will also discuss some results and open problems on the properties of a random n-vertex graph which is $r$-locally-$F$. This is all joint work with Itai Benjamini (Weizmann Institute of Science). 

Thu, 05 Jun 2014
16:00
L1

Capillary multipoles, shape anisotropy, and flocculation in 2D: the case of anisotropic colloids at fluid interfaces

Lorenzo Botto
(Queen Mary University of London)
Abstract

The synthesis of complex-shaped colloids and nanoparticles has recently undergone unprecedented advancements. It is now possible to manufacture particles shaped as dumbbells, cubes, stars, triangles, and cylinders, with exquisite control over the particle shape. How can particle geometry be exploited in the context of capillarity and surface-tension phenomena? This talk examines this question by exploring the case of complex-shaped particles adsorbed at the interface between two immiscible fluids, in the small Bond number limit in which gravity is not important. In this limit, the "Cheerio's effect" is unimportant, but interface deformations do emerge. This drives configuration dependent capillary forces that can be exploited in a variety of contexts, from emulsion stabilisation to the manufacturing of new materials. It is an opportunity for the mathematics community to get involved in this field, which offers ample opportunities for careful mathematical analysis. For instance, we find that the mathematical toolbox provided by 2D potential theory lead to remarkably good predictions of the forces and torques measured experimentally by tracking particle pairs of cylinders and ellipsoids. New research directions will also be mentioned during the talk, including elasto-capillary interactions and the simulation of multiphase composites.

Mon, 13 Feb 2012

12:00 - 13:00
L3

Quantum states to brane geometries via fuzzy moduli space

Sanjaye Ramgoolam
(Queen Mary University of London)
Abstract

The moduli space of supersymmetric (eighth-BPS) giant gravitons in $AdS_5 \times S^5$ is a limit of projective spaces. Quantizing this moduli space produces a Fock space of oscillator states, with a cutoff $N$ related to the rank of the dual $U(N)$ gauge group. Fuzzy geometry provides the ideal set of techniques for associating points or regions of moduli space to specific oscillator states. It leads to predictions for the spectrum of BPS excitations of specific worldvolume geometries. It also leads to a group theoretic basis for these states, containing Young diagram labels for $U(N)$ as well as the global $U(3)$ symmetry group. The problem of constructing gauge theory operators corresponding to the oscillator states and  some recent progress in this direction are explained.

Mon, 17 Jan 2011

12:00 - 13:30
L3

Generalised Geometry and M-theory

David Berman
(Queen Mary University of London)
Abstract
Abstract: We reformulate M-theory in terms of a generalised metric that combines the usual metric and the three form potential. The U-duality group is then a manifest symmetry.
Subscribe to Queen Mary University of London