Tue, 22 Nov 2011
12:00
L3

Thermal Stability of Quantum Black Holes

Prof Partha Majumdar
(Saha Institute and Theoretical Physics Oxford)
Abstract

I shall start with an idea (somewhat heuristic) that I call `Thermal Holography' and use that to probe the thermal behaviour of quantum horizons, i.e., without using any classical geometry, but using ordinary statistical mechanics with Gaussian fluctuations. This approach leads to a criterion for thermal stability for thermally active horizons with an Isolated horizon as an equilibrium configuration, whose (microcanonical) entropy has been computed using Loop Quantum Gravity (I shall outline this computation). As fiducial checks, we briefly look at some very well-known classical black hole metrics for their thermal stability and recover known results. Finally, I shall speculate about a possible link between our stability criterion and the Chandrasekhar upper bound for the mass of stable neutron stars.

Subscribe to Saha Institute and Theoretical Physics Oxford