Thu, 24 Feb 2011

16:00 - 17:00
DH 1st floor SR

Highway Traffic Stability

Eddie Wilson
(Southampton)
Abstract

"Most drivers will recognize the scenario: you are making steady progress along the motorway when suddenly you come to a sudden halt at the tail end of a lengthy queue of traffic. When you move off again you look for the cause of the jam, but there isn't one. No accident damaged cars, no breakdown, no dead animal, and no debris strewn on the road. So what caused everyone to stop?" RAC news release (2005)

The (by now well-known) answer is that such "phantom traffic jams" exist as waves that propagate upstream (opposite to the driving direction) - so that the vast majority of individuals do not observe the instant at which the jam was created - yet what exactly goes on at that instant is still a matter of debate. In this talk I'll give an overview of empirical data and models to describe such spatiotemporal patterns. The key property we need is instability: and using the framework of car-following (CF) models, I'll show how different sorts of linear (convective and absolute) and nonlinear instability can be used to explain empirical patterns.

Tue, 24 Nov 2009

17:00 - 18:00
L2

Base sizes for algebraic groups

Tim Burness
(Southampton)
Abstract

Let G be a permutation group on a set S. A base for G is a subset B of S such that the pointwise stabilizer of B in G is trivial. We write b(G) for the minimal size of a base for G.

Bases for finite permutation groups have been studied since the early days of group theory in the nineteenth century. More recently, strong bounds on b(G) have been obtained in the case where G is a finite simple group, culminating in the recent proof, using probabilistic methods, of a conjecture of Cameron.

In this talk, I will report on some recent joint work with Bob Guralnick and Jan Saxl on base sizes for algebraic groups. Let G be a simple algebraic group over an algebraically closed field and let S = G/H be a transitive G-variety, where H is a maximal closed subgroup of G. Our goal is to determine b(G) exactly, and to obtain similar results for some additional base-related measures which arise naturally in the algebraic group context. I will explain the key ideas and present some of the results we have obtained thus far. I will also describe some connections with the corresponding finite groups of Lie type.

Tue, 05 May 2009

17:00 - 18:00
L2

Representation growth of finitely generated nilpotent groups

Christopher Voll
(Southampton)
Abstract

The study of representation growth of infinite groups asks how the

numbers of (suitable equivalence classes of) irreducible n-dimensional

representations of a given group behave as n tends to infinity. Recent

works in this young subject area have exhibited interesting arithmetic

and analytical properties of these sequences, often in the context of

semi-simple arithmetic groups.

In my talk I will present results on the representation growth of some

classes of finitely generated nilpotent groups. They draw on methods

from the theory of zeta functions of groups, the (Kirillov-Howe)

coadjoint orbit formalism for nilpotent groups, and the combinatorics

of (finite) Coxeter groups.

Tue, 29 Apr 2008
12:00
L3

Nonlinear spherical sound waves at the surface of a perfect fluid star

Dr. Carsten Gundlach
(Southampton)
Abstract

Current numerical relativity codes model neutron star matter as a perfect fluid, with an unphysical "atmosphere" surrounding the star to avoid the breakdown of the equations at the fluid-vacuum interface at the surface of the star. To design numerical methods that do not require an unphysical atmosphere, it is useful to know what a generic sound wave looks near the surface. After a review of relevant mathematical methods, I will present results for low (finite) amplitude waves that remain smooth and, perhaps, for high amplitude waves that form a shock.

Fri, 09 Mar 2007
14:15
Dennis Sciama LT

TBA

Beatriz de Carlos
(Southampton)
Subscribe to Southampton