Tue, 27 May 2014

14:00 - 14:30
L5

A spectral difference method for hyperbolic conservation laws

Philipp Offner
(Technical Universitat Braunschweig)
Abstract

We study the behaviour of orthogonal polynomials on triangles and their coefficients in the context of spectral approximations of partial differential equations.  For spectral approximation we consider series expansions $u=\sum_{k=0}^{\infty} \hat{u}_k \phi_k$ in terms of orthogonal polynomials $\phi_k$. We show that for any function $u \in C^{\infty}$ the series expansion converges faster than with any polynomial order.  With these result we are able to employ the polynomials $\phi_k$ in the spectral difference method in order to solve hyperbolic conservation laws.

It is a well known fact that discontinuities can arise leading to oscillatory numerical solutions. We compare standard filtering and the super spectral vanishing viscosity methods, which uses exponential filters build from the differential operator of the respective orthogonal polynomials.  We will extend the spectral difference method for unstructured grids by using 
 classical orthogonal polynomials and exponential filters. Finally we consider some numerical test cases.


Subscribe to Technical Universitat Braunschweig