Thu, 31 Oct 2013

14:00 - 15:00
L5

Don't be afraid of the 1001st (numerical) derivative

Professor Folkmar Bornemann
(Technical University Munich)
Abstract

The accurate and stable numerical calculation of higher-order

derivatives of holomorphic functions (as required, e.g., in random matrix

theory to extract probabilities from a generating function) turns out to

be a surprisingly rich topic: there are connections to asymptotic analysis,

the theory of entire functions, and to algorithmic graph theory.

Fri, 14 Jun 2013

16:00 - 17:00
DH 1st floor SR

Weak solutions of the Kolmogorov backward equations for option pricing in Lévy models

Kathrin Glau
(Technical University Munich)
Abstract

Advanced models such as Lévy models require advanced numerical methods for developing efficient pricing algorithms. Here we focus on PIDE based methods. There is a large arsenal of numerical methods for solving parabolic equations that arise in this context. Especially Galerkin and Galerkin inspired methods have an impressive potential. In order to apply these methods, what is required is a formulation of the equation in the weak sense.

We therefore classify Lévy processes according to the solution spaces of the associated parabolic PIDEs. We define the Sobolev index of a Lévy process by a certain growth condition on the symbol. It follows that for Lévy processes with a certain Sobolev index b the corresponding evolution problem has a unique weak solution in the Sobolev-Slobodeckii space with index b/2. We show that this classification applies to a wide range of processes. Examples are the Brownian motion with or without drift, generalised hyperbolic (GH), CGMY and (semi) stable Lévy processes.

A comparison of the Sobolev index with the Blumenthal-Getoor index sheds light on the structural implication of the classification. More precisely, we discuss the Sobolev index as an indicator of the smoothness of the distribution and of the variation of the paths of the process.

An application to financial models requires in particular to admit pure jump processes as well as unbounded domains of the equation. In order to deal at the same time with the typical payoffs which can arise, the weak formulation of the equation has to be based on exponentially weighted Sobolev-Slobodeckii spaces. We provide a number of examples of models that are covered by this general framework. Examples of options for which such an analysis is required are calls, puts, digital and power options as well as basket options.

The talk is based on joint work with Ernst Eberlein.

Fri, 22 Feb 2013
16:00
DH 1st floor SR

Cancelled

Kathrin Glau
(Technical University Munich)
Subscribe to Technical University Munich